• Title/Summary/Keyword: CMC binder

Search Result 23, Processing Time 0.024 seconds

Electric and Mechanical Properties of CMC+PTFE Binary Binder Electrode for Electric Double Layer Capacitor (EDLC용 CMC+PTFE 혼합바인더 전극의 전기적, 기계적 특성)

  • Kim, Ick-Jun;Lee, Sun-Young;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1079-1084
    • /
    • 2004
  • This work describes the effect of electrode binder on the characteristics of electric double layer capacitor. Among carboxymethylcellulose (CMC), Polyvinylpyrrolidone (PVP), Polyvinyl Alcohol (PVA), and Polyvinylidene Fluoride (PVDF), the unit cell using CMC showed good rate capability at current densities between 2.5 mA/$\textrm{cm}^2$~100 mA/$\textrm{cm}^2$. However, CMC as a binder is incongruent, because the electrode bound with CMC is rigid and easy to crack during a press and winding process for fabrication of capacitor. The unit cell capacitor using the electrode bound with binary binder composed of CMC and Polytetrafluoroethylene (PTFE), especially in composition CMC : PTFE =60 : 40 wt.%, has exhibited the better mechanical properties than those of the unit cell with CMC. On the other hand, the mechanical properties of CMC+PTFE electrode, coated on underlayer composed of CMC and carbon black, were much improved.

Fabrication of CMC+PTFE Electrode and it's Electrochemical Performances (CMC+PTFE 혼합바인더 전극의 제조 및 전기화학적 특성)

  • Kim, Ick-Jun;Lee, Sun-Young;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1248-1253
    • /
    • 2004
  • This work describes the effect of electrode binder on the characteristics of electric double layer capacitor Among carboxymethylcellulose (CMC), Polyvinylpyrrolidone (PVP), Polyvinyl Alcohol (PVA), and Polyvinylidene Fluoride (PVDF), the unit cell using CMC showed good rate capability between $2.5mA/cm^2{\sim}100mA/cm^2$ current density. However, CMC as a binder is incongruent, because the electrode bound with CMC is rigid and easy to crack during a press and winding process for fabrication of capacitor. The unit cell capacitor using the electrode bound with binary binder composed of CMC and Polytetrafluoroethylene (PTFE), especially in composition CMC : PTFE : 60 : 40 wt.%, has exhibited the better mechanical properties than those of the unit cell with CMC. On the other hand, it was also noted that the mechanical properties of CMC+PTFE electrode, coated on underlayer composed of CMC and carbon black, were much improved the binding force.

  • PDF

Partially Carbonized Poly (Acrylic Acid) Grafted to Carboxymethyl Cellulose as an Advanced Binder for Si Anode in Li-ion Batteries

  • Cho, Hyunwoo;Kim, Kyungsu;Park, Cheol-Min;Jeong, Goojin
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • To improve the performance of Si anodes in advanced Li-ion batteries, the design of the electrode plays a critical role, especially due to the large volumetric expansion in the Si anode during Li insertion. In our study, we used a simple fabrication method to prepare Si-based electrodes by grafting polyacrylic acid (PAA) to a carboxymethyl cellulose (CMC) binder (CMC-g-PAA). The procedure consists of first mixing nano-sized Si and the binders (CMC and PAA), and then coating the slurry on a Cu foil. The carbon network was formed via carbonization of the binders i.e., by a simple heat treatment of the electrode. The carbon network in the electrode is mechanically and electrically robust, which leads to higher electrical conductivity and better mechanical property. This explains its long cycle performance without the addition of a conducting agent (for example, carbon). Therefore, the partially carbonized CMC-g-PAA binder presented in this study represents a new feasible approach to produce Si anodes for use in advanced Li-ion batteries.

Comparison of Electrochemical Properties of EDLCs using Activated Carbon Electrodes Fabricated with Various Binders (활성탄소 전극의 제조방식에 따른 EDLC 특성비교)

  • Yang, Sun-Hye;Jeon, Min-Je;Kim, Ick-Jun;Moon, Seong-In;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.353-354
    • /
    • 2006
  • This work describes the effect of binders, such as carboxymethylcellulose (CMC), CMC+Polytetrafluoroethylene (PTFE) and PTFE, on the electrochemical and mechanical properties of activated carbon-electrode for electric double layer capacitor. The cell capacitors using the electrode bound with binary binder composed of CMC and PTFE, especially m composition CMC ; PTFE = 60 : 40 wt %, has exhibited the better rate capability and the lower internal resistance than those of the cell capacitor with CMC. On the other hand, the sheet type electrode kneaded with PTFE was bonded with conductive adhesive on Al foil. This cell capacitor using the electrode with PTFE exhibited the best mechanical properties and rate capability compared to the CMC and CMC+PTFE one These behaviors could be explained by the well-developed network structure of PTFE fibrils during the kneading process.

  • PDF

Using Carboxylmethylated Cellulose as Water-Borne Binder to Enhance the Electrochemical Properties of Li4Ti5O12-Based Anodes

  • Liu, Lili;Cheng, Chongling;Liu, Hongjiang;Shi, Liyi;Wang, Dayang
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.315-320
    • /
    • 2015
  • The present work reports a systematic study of using carboxymethylated cellulose (CMC) as water-borne binder to produce $Li_4Ti_5O_{12}$-based anodes for manufacture of high rate performance lithium ion batteries. When the LTO-to-CB-to-CMC mass ratio is carefully optimized to be 8:1:0.57, the special capacity of the resulting electrodes is $144mAh{\cdot}g^{-1}$ at 10 C and their capacity retention was 97.7% after 1000 cycles at 1 C and 98.5% after 500 cycles at 5 C, respectively. This rate performance is comparable or even better than that of the electrolytes produced using conventional, organic, polyvinylidene fluoride binder.

Photoelectrochemical Performance of Hematite Nanoparticles Synthesized by a DC Thermal Plasma Process (DC 열플라즈마를 이용하여 제조된 산화철 나노입자의 광 전기화학적 물분해 효율 증가연구)

  • Lee, Chulho;Lee, Dongeun;Kim, Sunkyu;Yoo, Hyeonseok;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.306-310
    • /
    • 2015
  • In this research, hematite nanoparticles were synthesized by DC thermal plasma process to increase the overall surface area. The effect of binders on hematite electrodes was investigated by changing the type and composition of binders when preparing electrodes. Nitrogen gas was also added to the DC thermal plasma process in order to dope the hematite with N for enhancing photoelectrochemical properties of hematite nanoparticles. The efficiency of water splitting reaction was measured by linear sweep voltammetry (LSV) under solar simulator. In LSV measurements, the onset potential and maximum current density at a fixed voltage were measured. The durability of electrodes was checked by repeating LSV measurements. CMC (carboxymethyl cellulose) binder with 50 : 1 composition exhibits the highest current density of $12mA/cm^2$ and CMC binder with 20 : 1 composition, showing the initial current density of $3mA/cm^2$, endures 20 times of repetitive LSV measurements. Effects of nitrogen doping on hematite nanoparticles were proven to be insignificant.

Improvement of Cycle Performance of Graphite-Silicon Monoxide Mixture Negative Electrode in Lithium-ion Batteries (흑연과 실리콘 일산화물의 혼합물로 구성된 리튬이온 이차전지용 음극의 사이클 성능개선 연구)

  • Kim, Haebeen;Kim, Tae Hun;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.155-163
    • /
    • 2019
  • Mixture electrodes of a graphite having a good cycle performance and a silicon monoxide (SiO) having a high capacity are fabricated and their cycle performances are evaluated as negative electrodes for lithium-ion batteries. The electrode prepared by mixing the natural graphite and carbon-coated SiO in a mass ratio of 9:1 shows a reversible capacity of $480mAh\;g^{-1}$, 33% higher than that of graphite. However, the capacity deteriorates continuously upon cycling due to the volume change of silicon monoxide. In this study, the factors that can improve the cycle performance have been discussed through the change in the configurations of the electrode and the electrolyte. The electrode using the carboxymethyl cellulose (CMC) binder shows the best cycle performance compared to the conventional binders. The electrode sing the CMC and styrene-butadiene rubber (SBR) binder not only has almost the similar cycle characteristics with the electrode using the CMC binder but also has the better rate capability. When the fluoroethylene carbonate (FEC) is used as an electrolyte additive, the cycle life is improved. However, the electrolyte with 5 wt% of FEC is appropriate because the rate capability decreases when the content of FEC is increased to 10 wt%. In addition, when the mass loading of the electrode is lowered, the cycle performance is greatly improved. Also, enhanced cycle performance is achieved using the roughened Cu current collector polished by abrasive paper.

Effect of Binders on Electrochemical and Mechanical Properties of Activated Carbon Electrode for Electric Double Layer Capacitor (EDLC용 활성탄소 전극의 전기화학적 기계적 특성에 미치는 바인더의 영향)

  • Jeon, Min-Je;Kim, Ick-Jun;Yang, Sun-Hye;Moon, Seong-In;Kim, Hyun-Soo;Oh, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1167-1171
    • /
    • 2006
  • This work describes the effect of binders, such as carboxymethylcellulose (CMC), CMC+ Polytetrafluoroethylene (PTFE) and PTFE, on the electrochemical and mechanical properties of activated carbon-electrode for electric double layer capacitor. The cell capacitors using the electrode bound with binary binder composed of CMC and PTFE, especially in composition CMC PTFE = 60 : 40 wt.%, has better rate capability and the lower internal resistance than those of the cell capacitor with CMC. On the other hand, the sheet type electrode kneaded with PTFE was bonded with conductive adhesive on Al foil. This cell capacitor using the electrode with PTFE exhibited the best mechanical properties and rate capability compared to the CMC and CMC+PTFE one. These behaviors could be explained by the well-developed network structure of PTFE fibrils doting the kneading process.

Effect of Binder on Coating Layer Structure and Surface Strength of Coated Paper (바인더가 도공층 구조 및 도공지의 표면 강도에 미치는 영향)

  • 이용규;황석우
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.63-72
    • /
    • 1998
  • This research was intended to evaluate the effect of carboxymethylcellulose(CMC) on the coating structure and surface strength of coated paper prepared with amphoteric latex based coating color. Printability and optical properties of coated papers were compared. The influence of the consolidation behavior of coating color on the coating structure and the surface strength of coated paper was investigated. Compared with the conventional anionic latex, amphoteric latex formed bulkyer, smoother and more porous coating layer, which in turn, restricted binder migration in the coating layers, and facilitated immobilization of coating colors. However, dry pick strength of coated paper was decreased. The addition of CMC to these systems had strongly influenced on. the consolidation behavior and porosity in the dry state, through forming the network structure of coating layers by the interaction with amphoteric latex particles. Thus, printability and optical properties of coated papers were improved. Results indicated that amphoteric latex could be practically applied to the paper coating to improve printability and optical properties of coated papers.

  • PDF

Electrical Characteristics by Changing Binder Contents in the Carbon Counter Electrode for Dye-sensitized Solar Cells (DSSCs) (염료감응형 태양전지의 탄소대항전극 제조 시 바인더 함량 변화에 따른 전기적 특성)

  • Lee, Hyeon-Seok;Kim, Seong-Jun;Kwon, Jung-Youl;Park, Jeong-Cheol;Lee, Heon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.337-341
    • /
    • 2007
  • In this paper, we studied counter electrodes that carbon materials is used for dye-sensitized solar cells. Carbon electrodes characterized by changing of CMC wt. %. We investigated a porous structure of electrodes and a specific resistance of carbon electrodes for identification of electric conductivity. The specific resistance of carton electrodes increased by an increase of CMC wt. % and this result affected an efficiency of the cells.