DOI QR코드

DOI QR Code

Common Feature Analysis of Economic Time Series: An Overview and Recent Developments

  • Received : 2015.09.09
  • Accepted : 2015.09.12
  • Published : 2015.09.30

Abstract

In this paper we overview the literature on common features analysis of economic time series. Starting from the seminal contributions by Engle and Kozicki (1993) and Vahid and Engle (1993), we present and discuss the various notions that have been proposed to detect and model common cyclical features in macroeconometrics. In particular, we analyze in details the link between common cyclical features and the reduced-rank regression model. We also illustrate similarities and differences between the common features methodology and other popular types of multivariate time series modelling. Finally, we discuss some recent developments in this area, such as the implications of common features for univariate time series models and the analysis of common autocorrelation in medium-large dimensional systems.

Keywords

References

  1. Ahn, S. K. (1997). Inference of vector autoregressive models with cointegration and scalar components, Journal of the American Statistical Association, 92, 350-356. https://doi.org/10.1080/01621459.1997.10473633
  2. Ahn, S. K. and Reinsel, G. C. (1988). Nested reduced-rank autoregressive models for multiple time-series, Journal of the American Statistical Association, 83, 849-856.
  3. Ahn, S. K. and Reinsel, G. C. (1990). Estimation for partially nonstationary multivariate autoregressive models, Journal of the American Statistical Association, 85, 813-823. https://doi.org/10.1080/01621459.1990.10474945
  4. Anderson, H. M. and Vahid, F. (1998). Testing multiple equation systems for common nonlinear components, Journal of Econometrics, 84, 1-36. https://doi.org/10.1016/S0304-4076(97)00076-6
  5. Anderson, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate normal distributions, Annals of Mathematical Statistics, 22, 327-351. https://doi.org/10.1214/aoms/1177729580
  6. Anderson, T.W. (1984). An Introduction to Multivariate Statistical Analysis, (2nd ed.), John Wiley & Sons, New York.
  7. Anderson, T.W. (1999). Asymptotic theory for canonical correlation analysis, Journal of Multivariate Analysis, 70, 1-29. https://doi.org/10.1006/jmva.1999.1810
  8. Anderson, T.W. (2002). Canonical correlation analysis and reduced rank regression in autoregressive models, Annals of Statistics, 30, 1134-1154. https://doi.org/10.1214/aos/1031689020
  9. Athanasopoulos, G., de Carvalho Guillen, O. T., Issler, J. V. and Vahid, F. (2011). Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions, Journal of Econometrics, 164, 116-129. https://doi.org/10.1016/j.jeconom.2011.02.009
  10. Bai, J. and Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions, Econometrica, 74, 1133-1150. https://doi.org/10.1111/j.1468-0262.2006.00696.x
  11. Bernardini, E. and Cubadda, G. (2015). Macroeconomic forecasting and structural analysis through regularized reduced-rank regression, International Journal of Forecasting, 31, 682-691. https://doi.org/10.1016/j.ijforecast.2013.10.005
  12. Beveridge, S. and Nelson, C. R. (1981). A new apporach to decomposition of economic time series into permanent and transitory component with particular attention to measurement of the 'business cycle', Journal of Monetary Economics, 7, 151-174. https://doi.org/10.1016/0304-3932(81)90040-4
  13. Bierens, H. J. (2000). Nonparametric nonlinear cotrending analysis, with an application to interest and inflation in the United States, Journal of Business & Economic Statistics, 18, 323-337.
  14. Campbell, J. Y. (1987). Does saving anticipate declining labor income - An alternative test of the permanent income hypothesis, Econometrica, 55, 1249-1273. https://doi.org/10.2307/1913556
  15. Campbell, J. Y. and Mankiw, N. G. (1990). Permanent income, current income, and consumption, Journal of Business & Economic Statistics, 8, 265-279.
  16. Carriero, A., Kapetanios, G. and Marcellino, M. (2011). Forecasting large datasets with Bayesian reduced rank multivariate models, Journal of Applied Econometrics, 26, 735-761. https://doi.org/10.1002/jae.1150
  17. Centoni, M., Cubadda, G. and Hecq, A. (2007). Common shocks, common dynamics, and the international business cycle, Economic Modelling, 24, 149-166. https://doi.org/10.1016/j.econmod.2006.06.008
  18. Chapman, D. A. and Ogaki, M. (1993). Cotrending and the stationarity of the real interest rate, Economics Letters, 42, 133-138. https://doi.org/10.1016/0165-1765(93)90050-M
  19. Cubadda, G. (1999). Common cycles in seasonal non-stationary time series, Journal of Applied Econometrics, 14, 273-291. https://doi.org/10.1002/(SICI)1099-1255(199905/06)14:3<273::AID-JAE498>3.0.CO;2-N
  20. Cubadda, G. (2001). Common features in time series with both deterministic and stochastic seasonality, Econometric Reviews, 20, 201-216. https://doi.org/10.1081/ETC-100103823
  21. Cubadda, G. (2007). A unifying framework for analyzing common cyclical features in cointegrated time series, Computational Statistics & Data Analysis, 52, 896-906. https://doi.org/10.1016/j.csda.2007.07.004
  22. Cubadda, G. and Hecq, A. (2001). On non-contemporaneous short-run co-movements, Economics Letters, 73, 389-397. https://doi.org/10.1016/S0165-1765(01)00514-6
  23. Cubadda, G. and Hecq, A. (2011). Testing for common autocorrelation in data-rich environments, Journal of Forecasting, 30, 325-335. https://doi.org/10.1002/for.1186
  24. Cubadda, G., Hecq, A. and Palm, F. C. (2008). Macro-panels and reality, Economics Letters, 99, 537-540. https://doi.org/10.1016/j.econlet.2007.09.046
  25. Cubadda, G., Hecq, A. and Palm, F. C. (2009). Studying co-movements in large multivariate data prior to multivariate modelling, Journal of Econometrics, 148, 25-35. https://doi.org/10.1016/j.jeconom.2008.08.026
  26. Engle, R. F. and Granger, C. W. (1987). Co-integration and error correction: Representation, estimation and testing, Econometrica, 55, 251-276. https://doi.org/10.2307/1913236
  27. Engle, R. F. and Issler, J. V. (1995). Estimating common sectoral cycles, Journal of Monetary Economics, 35, 83-113. https://doi.org/10.1016/0304-3932(94)01188-G
  28. Engle, R. F. and Kozicki, S. (1993). Testing for common features, Journal of Business & Economic Statistics, 11, 369-380.
  29. Engle, R. F. and Marcucci, J. (2006). A long-run pure variance common features model for the common volatilities of the Dow Jones, Journal of Econometrics, 132, 7-42. https://doi.org/10.1016/j.jeconom.2005.01.021
  30. Engle, R. F. and Susmel, R. (1993). Common volatility in international equity markets, Journal of Business & Economic Statistics, 11, 167-176.
  31. Ericsson, N. R. (1993). Comment: Testing for common features, Journal of Business & Economic Statistics, 11, 380-383.
  32. Flavin, M. (1993). The excess smoothness of consumption - identification and interpretation, Review of Economic Studies, 60, 651-666. https://doi.org/10.2307/2298129
  33. Franchi, M. and Paruolo, P. (2011). A characterization of vector autoregressive processes with common cyclical features, Journal of Econometrics, 163, 105-117. https://doi.org/10.1016/j.jeconom.2010.11.009
  34. Gourieroux, C. S. and Peaucelle, I. (1988). Detecting a long run relationship (with an application to the p.p.p. hypothesis), Centre d'etudes prospectives d'economie mathematique appliquees a la planification, Paris.
  35. Haldrup, N., Hylleberg, S., Pons, G. and Sanso, A. (2007). Common periodic correlation features and the interaction of stocks and flows in daily airport data, Journal of Business & Economic Statistics, 25, 21-32. https://doi.org/10.1198/073500106000000459
  36. Hall, R. E. (1978). Stochastic implications of the life cycle-permanent income hypothesis: Theory and evidence, Journal of Political Economy, 86, 971-987. https://doi.org/10.1086/260724
  37. Hecq, A., Palm, F. C. and Urbain, J. P. (2000). Testing for common cyclical features in nonstationary panel data models, Advances in Econometrics, 15, 131-160. https://doi.org/10.1016/S0731-9053(00)15005-4
  38. Hecq, A., Palm, F. C. and Urbain, J. P. (2006). Common cyclical features analysis in VAR models with cointegration, Journal of Econometrics, 132, 117-141. https://doi.org/10.1016/j.jeconom.2005.01.025
  39. Hendry, D. F. (1999). Co-breaking. In M. P. Clements and D. F. Hendry (Eds.), Forecasting Non-stationary Economic Time Series, MIT Press, Cambridge, MA.
  40. Hendry, D. F. and Massmann, M. (2007). Co-breaking: Recent advances and a synopsis of the literature, Journal of Business & Economic Statistics, 25, 33-51. https://doi.org/10.1198/073500106000000422
  41. Hylleberg, S., Engle, R. F., Granger, C.W. and Yoo, B. S. (1990). Seasonal integration and cointegration, Journal of Econometrics, 44, 215-238. https://doi.org/10.1016/0304-4076(90)90080-D
  42. Issler, J. V. and Vahid, F. (2001). Common cycles and the importance of transitory shocks to macroeconomic aggregates, Journal of Monetary Economics, 47, 449-475. https://doi.org/10.1016/S0304-3932(01)00052-6
  43. Johansen, S. (1988). Statistical analysis of cointegration vectors, Journal of Economic Dynamics and Control, 12, 231-254. https://doi.org/10.1016/0165-1889(88)90041-3
  44. Johansen, S. (1996). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, Oxford University Press, Oxford, UK.
  45. Kadiyala, K. R. and Karlsson, S. (1997). Numerical methods for estimation and inference in Bayesian VAR-models, Journal of Applied Econometrics, 12, 99-132. https://doi.org/10.1002/(SICI)1099-1255(199703)12:2<99::AID-JAE429>3.0.CO;2-A
  46. King, R. G., Plosser, C. I. and Rebelo, S. T. (1988). Production, growth and business cycles: II.New Directions, Journal of Monetary Economics, 21, 309-341. https://doi.org/10.1016/0304-3932(88)90034-7
  47. Koop, G. M. (2013). Forecasting with medium and large Bayesian VARs, Journal of Applied Econometrics, 28, 177-203. https://doi.org/10.1002/jae.1270
  48. Ledoit, O. and Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, Journal of Empirical Finance, 10, 603-621. https://doi.org/10.1016/S0927-5398(03)00007-0
  49. Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions: Five years of experience, Journal of Business & Economic Statistics, 4, 25-38.
  50. Long, J. B. and Plosser, C. I. (1983). Real business cycles, The Journal of Political Economy, 91, 39-69. https://doi.org/10.1086/261128
  51. Lucas, R. E. (1977). Understanding business cycles, Carnegie-Rochester Conference Series on Public Policy, 5, 7-29.
  52. Paruolo, P. (2006). Common trends and cycles in I(2) VAR systems, Journal of Econometrics, 132, 143-168. https://doi.org/10.1016/j.jeconom.2005.01.026
  53. Reinsel, G. (1983). Some results on multivariate autoregressive index models, Biometrika, 70, 145-156. https://doi.org/10.1093/biomet/70.1.145
  54. Reinsel, G. C. and Velu, R. P. (1998). Multivariate Reduced Rank Regression, Springer, New York.
  55. Rosipal, R. and Kramer, N. (2006). Overview and recent advances in partial least squares, In C. Saunders et al. (Eds.), Subspace, Latent Structure and Feature Selection, Springer, Berlin, 34-51.
  56. Schleicher, C. (2007). Codependence in cointegrated autoregressive models, Journal of Applied Econometrics, 22, 137-159. https://doi.org/10.1002/jae.930
  57. Stock, J. H. and Watson, M. W. (2005). Implications of dynamic factor models for VAR analysis (No. w11467), Cambridge, National Bureau of Economic Research, MA.
  58. Stock, J. H. and Watson, M. W. (2011). Dynamic factor models. In M. P. Clements and D. F. Hendry (Eds.), Oxford Handbook of Economic Forecasting, Oxford University Press, New York, 35-59.
  59. Tiao, G. C. and Tsay, R. S. (1989). Model specification in multivariate time series, Journal of the Royal Statistical Society. Series B (Methodological), 51, 157-213.
  60. Vahid, F. and Engle, R. F. (1993). Common trends and common cycles, Journal of Applied Econometrics, 8, 341-360.
  61. Vahid, F. and Engle, R. F. (1997). Codependent cycles, Journal of Econometrics, 80, 199-221. https://doi.org/10.1016/S0304-4076(97)00032-8
  62. Vahid, F. and Issler, J. V. (2002). The importance of common cyclical features in VAR analysis: A Monte-Carlo study, Journal of Econometrics, 109, 341-363. https://doi.org/10.1016/S0304-4076(02)00117-3
  63. Velu, R. P., Reinsel, G. C. and Wichern, D. W. (1986). Reduced rank models for multiple time series, Biometrika, 73, 105-118. https://doi.org/10.1093/biomet/73.1.105
  64. Vinod, H. D. (1976). Canonical ridge and econometrics of joint production, Journal of Econometrics, 4, 147-166. https://doi.org/10.1016/0304-4076(76)90010-5
  65. Zellner, A. and Palm, F. (1974). Time series analysis and simultaneous equation econometric models, Journal of Econometrics, 2, 17-54. https://doi.org/10.1016/0304-4076(74)90028-1

Cited by

  1. Detecting Co-Movements in Non-Causal Time Series pp.03059049, 2019, https://doi.org/10.1111/obes.12281