DOI QR코드

DOI QR Code

Modelling and experimental investigations on stepped beam with cavity for energy harvesting

  • Reddya, A. Rami (Department of Instrumentation and Control Engineering, National Institute of Technology) ;
  • Umapathy, M. (Department of Instrumentation and Control Engineering, National Institute of Technology) ;
  • Ezhilarasib, D. (Department of Instrumentation and Control Engineering, National Institute of Technology) ;
  • Uma, G. (Department of Instrumentation and Control Engineering, National Institute of Technology)
  • Received : 2014.09.10
  • Accepted : 2015.02.05
  • Published : 2015.10.25

Abstract

This paper presents techniques to harvest higher voltage from piezoelectric cantilever energy harvester by structural alteration. Three different energy harvesting structures are considered namely, stepped cantilever beam, stepped cantilever beam with rectangular and trapezoidal cavity. The analytical model of three energy harvesting structures are developed using Euler-Bernoulli beam theory. The thickness, position of the rectangular cavity and the taper angle of the trapezoidal cavity is found to shift the neutral axis away from the surface of the piezoelectric element which in turn increases the generated voltage. The performance of the energy harvesters is evaluated experimentally and is compared with regular piezoelectric cantilever energy harvester. The analytical and experimental investigations reveal that, the proposed energy harvesting structures generate higher output voltage as compared to the regular piezoelectric cantilever energy harvesting structure. This work suggests that through simple structural modifications higher energy can be harvested from the widely reported piezoelectric cantilever energy harvester.

Keywords

References

  1. Abdelkefi, A. and Barsallo, N. (2014), "Comparative modelling of low-frequency piezomagnetoelastic energy harvesters", J. Intel.Mat. Syst. Str., DOI:10.1177/1045389X14523860.
  2. Abdelkefi, A. and Ghommem, M. (2013), "Piezoelectric energy harvesting from morphing wing motions for micro air vehicles", Theor. Appl. Mech. Lett., 3, 052001. https://doi.org/10.1063/2.1305201
  3. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R. and Najar, F. (2012), "Energy harvesting from a multi frequency response of a tuned bending-torsion system", Smart Mater. Struct., 21(7), 075029. https://doi.org/10.1088/0964-1726/21/7/075029
  4. Barker, S., Brennan, D., Wright, N.G. and Horsfall, A.B. (2011), "Piezoelectric-powered wireless sensor system with regenerative transmit mode", Inst. Eng. Technol., 1, 31-38.
  5. Ben Ayed, S., Abdelkefi, A., Najar, F. and Hajj, M.R. (2014), "Design and performance of variable-shaped piezoelectric energy harvesters", J. Intel. Mat. Syst. Str., 25,174-186. https://doi.org/10.1177/1045389X13489365
  6. Benasciutti, D., Moro, L., Zelenika, S. and Brusa, E. (2010), "Vibration energy scavenging via piezoelectric bimorphs of optimized shapes", Microsyst. Technol., 16,657-668. https://doi.org/10.1007/s00542-009-1000-5
  7. Carlos De Marqui, J, Erturk, A. and Inman, D.J. (2009), "An electromechanical finite element model for piezoelectric energy harvester plates", J. Sound Vib., 327, 9-25. https://doi.org/10.1016/j.jsv.2009.05.015
  8. Challa, V.R., Prasad, M.G. and Fisher, F.T. (2011), "Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications", Smart Mater. Struct., 20(2), 025004. https://doi.org/10.1088/0964-1726/20/2/025004
  9. Chen, X.R., Yang, T.Q., Wang, W. and Yao, X. (2012), "Vibration energy harvesting with a clamped piezoelectric circular diaphragm", Ceram. Int., 38, 271-S274. https://doi.org/10.1016/j.ceramint.2011.04.099
  10. Dai, H.L., Abdelkefi, A. and Wang, L. (2014a), "Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations", Nonlinear Dynam, 77(3), 967-981. https://doi.org/10.1007/s11071-014-1355-8
  11. Dai, H.L., Abdelkefi, A. and Wang, L. (2014b), "Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations", J. Intel. Mat. Syst. Str., 1-14.
  12. Dosch, J.J., Inman, D.J. and Garcia, E. (1992), "A self-sensing piezoelectric actuator for collocated control", J. Intel. Mat. Syst. Str., 3, 166-185. https://doi.org/10.1177/1045389X9200300109
  13. Ece, M.C., Aydogdu, M. and Taskin, V. (2007), "Vibration of a variable cross-section beam", Mech. Res. Commun., 34(1), 78-84. https://doi.org/10.1016/j.mechrescom.2006.06.005
  14. Erturk, A. (2009), Electromechanical modeling of piezoelectric energy harvesters, PhD Dissertation, Virginia Tech, Blacksburg.
  15. Ferrari, M., Ferrari, V., Guizzetti, M. and Marioli, D. (2009), "An autonomous battery- less sensor module powered by piezoelectric energy harvesting with RF transmission of multiple measurement signals", Smart Mater. Struct., 18, 085023. https://doi.org/10.1088/0964-1726/18/8/085023
  16. Guan, Q.C., Ju, B., Xu, J.W., Liu, Y.B. and Feng, Z.H. (2013), "Improved strain distribution of cantilever piezoelectric energy harvesting devices using H-shaped proof masses", J. Intel. Mat. Syst. Str., 24(9), 1059-1066. https://doi.org/10.1177/1045389X13476150
  17. Kim, N.L., Jeong, S.S., Cheon, S.K. and Park, T.G. (2013), "Generating characteristics of hollow-plate-type piezoelectric energy harvester", J. Korean Phys. Soc., 63, 2310-2313. https://doi.org/10.3938/jkps.63.2310
  18. Levron, Y., Shmilovitz, D. and Martinez-Salamero, L. (2011), "A power management strategy for minimization of energy storage reservoirs in wireless systems with energy harvesting", IEEE T. Circuits Syst., 58(3), 633-643. https://doi.org/10.1109/TCSI.2010.2073830
  19. Li, W.G., He, S. and Yu, S. (2010), "Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass", IEEE T. Ind. Electron., 57(3), 868-876. https://doi.org/10.1109/TIE.2009.2030761
  20. Liao, Y. and Sodano, H.A. (2012), "Optimal placement of piezoelectric material on a cantilever beam for maximum piezoelectric damping and power harvesting efficiency", Smart Mater. Struct., 21(10), 105014. https://doi.org/10.1088/0964-1726/21/10/105014
  21. Magoteaux, K.C., Sanders, B. and Sodano, A.H. (2008), "Investigation of energy harvesting small unmanned air vehicle", Smart Materials and Structures: Active and Passive Smart Structures and Integrated Systems II, Proceedings of the SPIE, San Diego, CA.
  22. Mehraeen, S., Jagannathan, S. and Corzine, K.A. (2010), "Energy harvesting from vibration with alternate scavenging circuitry and tapered cantilever beam", IEEE T. Ind. Electron., 57(3), 820-830. https://doi.org/10.1109/TIE.2009.2037652
  23. Paquin, S. and St-Amant, Y. (2010), "Improving the performance of a piezoelectric energy harvester using a variable thickness beam", Smart Mater. Struct., 19(10), 105020 (14pp). https://doi.org/10.1088/0964-1726/19/10/105020
  24. Park, J., Lee, S. and Kwak, B.M. (2012), "Design optimization of piezoelectric energy harvester subject to tip excitation", J. Mech. Sci. Technol., 26(1), 137-143. https://doi.org/10.1007/s12206-011-0910-1
  25. Priya, S. (2007), "Advances in energy harvesting using low profile piezoelectric transducers", J. Electroceram, 19, 165-182.
  26. Salehi-Khojin, A., Bashash, S. and Jalili, N. (2008), "Modeling and experimental vibration analysis of nano mechanical cantilever active probes", J. Micromech. Microeng., 18(8), 085008. https://doi.org/10.1088/0960-1317/18/8/085008
  27. Sodano, H.A. and Inamn, D.J. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib. Digest, 36(3), 197-205. https://doi.org/10.1177/0583102404043275
  28. Wang, Q. and Wu, N. (2012), "Optimal design of a piezoelectric coupled beam for power harvesting", Smart Mater. Struct., 21(8), 085013. https://doi.org/10.1088/0964-1726/21/8/085013

Cited by

  1. A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities vol.8, pp.11, 2018, https://doi.org/10.3390/app8112091
  2. Analytical and experimental investigation of stepped piezoelectric energy harvester vol.26, pp.6, 2015, https://doi.org/10.12989/sss.2020.26.6.681