DOI QR코드

DOI QR Code

Synergistic effect of clay and polypropylene short fibers in epoxy based ternary composite hybrids

  • Prabhu, T. Niranjana (Department of Chemistry, M.S. Ramaiah University of Applied Sciences) ;
  • Demappa, T. (Department of Studies and Research in Polymer Science, Sir M.V. Postgraduate Centre, University of Mysore) ;
  • Harish, V. (Department of Physics, Government First Grade College) ;
  • Prashantha, K. (Department of Polymers and Composites Technology & Mechanical Engineering)
  • Received : 2015.03.10
  • Accepted : 2015.09.08
  • Published : 2015.06.25

Abstract

Polypropylene short fiber (PP)-clay particulate-epoxy ternary composites were prepared by reinforcing PP short fiber and clay particles in the range of 0.1 phr to 0.7 phr into epoxy resin. Prepared hybrid composites were characterized for their mechanical, thermal and flame retardant properties. The obtained results indicated an increase in impact resistance, tensile strength, flexural strength and Young's modulus to an extent (up to 0.5 phr clay and 0.5 phr PP short fiber) and then decreases as the reinforcing phases are further increased. The thermal stability of these materials are found to increase up to 0.2 phr clay and 0.2 phr PP addition, beyond which it is decreased. Addition of clay is found to have the negative effect on epoxy-PP short fiber composites, which is evident from the comparison of mechanical and thermal properties of epoxy-0.5 phr PP short fiber composite and epoxy-0.5 phr PP short fiber-0.5 phr clay composite hybrid. UL-94 tests conducted on the composite hybrids have showed a reduction in the burning rate. Morphological observations indicated a greater fiber pull with the addition of clay. The performed tests in the present study indicated that materials under investigation have promising applications in construction, agriculture and decorative purposes.

Keywords

References

  1. Alexandre, M. and Dubois, P. (2000), "Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials", Mater. Sci. Eng. Res., 28(1-2), 1-63. https://doi.org/10.1016/S0927-796X(00)00012-7
  2. Azeez, A.A., Rhee, K.Y., Park, S.J. and Hui, D. (2013), "Epoxy clay nanocomposites- processing, properties and applications: A review", Compos. Part B: Eng., 45 (1), 308-320 https://doi.org/10.1016/j.compositesb.2012.04.012
  3. Blumstein, A.J. (1965), "Polymerization of adsorbed monolayers: II. Thermal degradation of the inserted polymers", Polym. Sci. A: Polym. Chem., 3, 2665-2673.
  4. Camino, G., Maffezzoli, A., Braglia, M., De Lazzaro, M. and Zammarano, M. (2001), "Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer", Polym. Degrad. Stab., 74(3), 457-464. https://doi.org/10.1016/S0141-3910(01)00167-7
  5. Chen, L., Wong, S.C. and Pisharath, S. (2003), "Fracture properties of nanoclay-filled polypropylene", J. Appl. Polym. Sci., 88, 3298-3305. https://doi.org/10.1002/app.12153
  6. Dutra, R.C.L., Soares, B.G., Campos, E.A. and Silva, J.L.G. (2000), "Hybrid composites based on polypropylene and carbon fiber and epoxy matrix", Polym., 41(10), 3841-3849. https://doi.org/10.1016/S0032-3861(99)00552-2
  7. Freeman, E.S. and Caroll, B.J. (1958), "The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the Kinetics of the decomposition of calcium oxalate monohydrate", J. Phys. Chem., 62(4), 394-397. https://doi.org/10.1021/j150562a003
  8. Harlow, D.G. (1983), "Statistical properties of hybrid composites I: recursion Analysis", Proc. Roy. Soc. London-A., 389, 67-100. https://doi.org/10.1098/rspa.1983.0096
  9. Horowitz, H.H. and Metzger, G. (1963), "A new analysis of thermogravimetric traces", Anal. Chem., 35(10), 1464-1468. https://doi.org/10.1021/ac60203a013
  10. Jang, J. and Moon, S.I. (1995), "Impact and behavior of carbon fiber ultra-high modulus polyethylene fiber hybrid composites", Compos., 16(4), 325-329.
  11. Kulkarni, S.M. (2003), "Effect of filler-fiber interactions on compressive strength of fly ash and short-fiber epoxy composites", J. Appl. Polym. Sci., 87(5), 836-841. https://doi.org/10.1002/app.11501
  12. Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.M. and Dubois, P. (2009), "New prospects in flame retardant polymer materials: from fundamentals to nanocomposites", Mater. Sci. Eng., 63, 100-125. https://doi.org/10.1016/j.mser.2008.09.002
  13. Mohan, T.P. and Kanny, K. (2012), "Effect of nanoclay in HDPE-glass fiber composites on processing, structure and properties", Adv. Compos. Mater., 21(4), 315-331. https://doi.org/10.1080/09243046.2012.736348
  14. Niranjana Prabhu, T., Hemalatha, Y.J., Harish, V., Prashantha, K. and Iyengar, P. (2007), "Thermal degradation of epoxy resin reinforced with polypropylene fibers", J. Appl. Polym. Sci., 104, 500-503. https://doi.org/10.1002/app.25523
  15. Morfologi, S. and dan Mekanik, T. (2013), "Glass fiber and nanoclay reinforced polypropylene composites: Morphological, thermal and mechanical properties", Sains Malays., 42(4), 537-546.
  16. Ozava, T., Kaneko, T. and Sunose, T.J. (1996), "Historical review on research of kinetics in thermal analysis and thermal endurance of electrical insulating materials II. Thermal endurance evaluation by thermal analysis", Therm. Anal., 47, 1105-1120. https://doi.org/10.1007/BF01979451
  17. Peeter Broeck, S., Alexandre, M., Jerome, R. and Dubois, P. (2005), "Poly(ethylene-co-vinyl acetate)/clay nanocomposites: Effect of clay nature and organic modifiers on morphology, mechanical and thermal properties", Polym. Degrad. Stab., 90, 288-294. https://doi.org/10.1016/j.polymdegradstab.2005.03.023
  18. Peijs, A.A.J.M., Catsman, P., Govaert, L.E. and Lemstra, P.J. (1990), "Hybrid composites based on polyethylene and carbon fibres Part 2: influence of composition and adhesion level of polyethylene fibres on mechanical properties", Compos., 21(6), 513-521. https://doi.org/10.1016/0010-4361(90)90424-U
  19. Peijs, A.A.J.M., Venderbosch, R.W. and Lemstra, P.J. (1990), "Hybrid composites based on polyethylene and carbon fibres Part 3: Impact resistant structural composites through damage management", Compos., 21(6), 522-530. https://doi.org/10.1016/0010-4361(90)90425-V
  20. Peijs, A.A.J.M. and Van Klinken, E.J. (1992), "Hybrid composites based on polyethylene and carbon fibres Part V Energy absorption under quasi-static crash conditions", J. Mat. Sci. Lett., 11(8), 520-522. https://doi.org/10.1007/BF00731125
  21. Peijs, A.A.J.M. and Venderbosch, R.W. (1991), "Hybrid composites based on polyethylene and carbon fibres Part IV Influence of hybrid design on impact strength", J. Mat. Sci. Lett., 10, 1122-1124. https://doi.org/10.1007/BF00744101
  22. Ratna, D. (2005), Epoxy Composites: Impact Resistance and Flame Retardancy, Rapra Publications, United Kingdom..
  23. Wang, S. and Garton, A. (1992), "Chemical interactions at the interface between a carbon fiber and a boron trifluoride-catalyzed epoxy matrix", J. Appl. Polym. Sci., 45(10), 1743-1752. https://doi.org/10.1002/app.1992.070451008
  24. UL 94 Test for Flammability of Plastic Materials for Parts in Devices and Appliances, Northbrook, IL, Underwriters Laboratories Inc. 199.
  25. Valera-Zaragoza, M., Ramirez-Vargas, E., Medellin-Rodriguez, F.J., Huerta-Martinez, B.M., (2006), "Flame retardant synergistic effect of expandable graphite and exfoliated graphite nano-platelets in the EVA composites for thermal properties", Polym. Degrad. Stab., 91, 1319-1325. https://doi.org/10.1016/j.polymdegradstab.2005.08.011
  26. Wan, Y.Z., Wang, Y.L., He, F., Huang, F. and Jiang, H.J. (2007), "Mechanical performance of hybrid bismaleimide composites reinforced with three-dimensional braided carbon and Kevlar fabrics", Compos. Part A: Appl. Sci. Manuf., 38, 495-504. https://doi.org/10.1016/j.compositesa.2006.02.021
  27. Yasmin, A., Luo, J.J., Abot, J.L. and Daniel, I.M. (2006), "Mechanical and thermal behavior of clay/epoxy nanocomposites", Compos. Sci. Tech., 66(14), 2415-2422. https://doi.org/10.1016/j.compscitech.2006.03.011
  28. Zammarano, M., Franceschi, M., Bellayer, S., Gilman, J.W. and Meriani, S. (2005), "Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides", Polym., 46, 9314-9328. https://doi.org/10.1016/j.polymer.2005.07.050
  29. Zhao, C., Qin, H., Gong, F., Feng, M., Zhang, S. and Yang, M., (2005), "Mechanical, thermal and flammability characteristics of polyethylene/clay nanocomposites", Polym. Degrad. Stab., 87, 183-189. https://doi.org/10.1016/j.polymdegradstab.2004.08.005

Cited by

  1. Mechanical properties of Al/Al2O3and Al/B4C composites vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.263