DOI QR코드

DOI QR Code

An Estimation of the of Tropical Cyclone Size Using COMS Infrared Imagery

천리안 위성 적외영상 자료를 이용한 태풍강풍반경의 산출

  • Lee, Yoon-Kyoung (Ocean Circulation and Climate Research Center, Korea Institute of Ocean and Science Technology) ;
  • Kwon, MinHo (Ocean Circulation and Climate Research Center, Korea Institute of Ocean and Science Technology)
  • 이윤경 (한국해양과학기술원 해양순환.기후연구센터) ;
  • 권민호 (한국해양과학기술원 해양순환.기후연구센터)
  • Received : 2015.08.10
  • Accepted : 2015.08.21
  • Published : 2015.09.30

Abstract

An algorithm to symmetric radius of $15ms^{-1}$ isotaches of tropical cyclones is suggested using infrared (IR) imagery of geostationary satellite. It is assumed that symmetric tangential winds outside the maximum winds exponentially decrease with the radial distances of the tropical cyclone, which has a clear eye-wall structure. Four parameters for estimation of the tropical cyclone size are center location, maximum sustained wind, radius of the maximum wind, and relaxation coefficient for the decreasing rate with distances of the tropical cyclone. The estimation results are limitedly verified as comparing to surface winds of polar orbiting satellite such as ASCAT data.

Keywords

References

  1. Brand, S., 1972: Very large and very small typhoons of the Western North Pacific Ocean. J. Appl. Meteorol., 9, 433-441.
  2. Chan, J. C. L., and J. D. Kepert, Eds., 2010: Global perspectives on Tropical Cyclones: From Science to Mitigation. World Scientific, 436 pp.
  3. Demuth, J. D., M. DeMaria, and J. A. Knaff, 2006: Improvement of advanced microwave sounding unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 1573-1581. https://doi.org/10.1175/JAM2429.1
  4. Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723-745. https://doi.org/10.1002/qj.49711046510
  5. Hsu, S. A., and A. Babin, 2005: Estimating the radius of maximum winds via satellite during hurricane LiLi (2002) over the gulf of Mexico. Natl. Wea. Assoc. Electron. J., 2005-EJ13.
  6. Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89-101. https://doi.org/10.1175/WAF985.1
  7. Kwon, M., 2012: Estimation and statistical characteristics of the radius of maximum wind of tropical cyclones using COMS IR imagery. Atmosphere, 22, 473-481 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.4.473
  8. Lajoie, F., and K. Walsh, 2008: A technique to determine the radius of maximum wind of a tropical cyclone. Wea. Forecasting, 23, 1007-1015. https://doi.org/10.1175/2008WAF2007077.1
  9. Liu, K. S., and J. C. L. Chan, 1999: Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Wea. Rev., 127, 2992.3001. https://doi.org/10.1175/1520-0493(1999)127<2992:SOTCAI>2.0.CO;2
  10. Merrill, R. T., 1984: A comparison of large and small Tropical Cyclones. Mon. Wea. Rev., 112, 1408-1418. https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2
  11. Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. A. Shapiro, G. R. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC virtual field campaign. Bull. Amer. Meteor. Soc., 93, 1171-1187. https://doi.org/10.1175/BAMS-D-11-00233.1
  12. Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287-298. https://doi.org/10.1175/WAF975.1