DOI QR코드

DOI QR Code

Retrieval of Nighttime Aerosol Optical Thickness from Star Photometry

별 측광을 통한 야간 에어로졸의 광학적 두께 산출

  • Received : 2015.04.22
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

In this study star photometry was applied to retrieve aerosol optical thickness (AOT) at night. The star photometry system consisted of small refractor, optical filters, CCD camera, and driving mount and was located in Suwon. The calibration constants were retrieved from the astronomical Langley method but standard deviations of these were more than 10% of the mean values. After the calibration the nighttime AOT was retrieved and cloud-screened in clear six days from 25 Nov. 2014 to 17 Jan. 2015. To estimate the quality of the measurements the nighttime AOT was combined with daytime AOT retrieved from sky-radiometer that was located in Seoul and 17 km away from the star photometry system. In spite of the uncertainty of the calibration constants and the spatial difference of two observation systems, the temporal changes of the nighttime AOT coincided with the daytime. The nighttime ${\AA}ngstr{\ddot{o}}m$ exponent was about 20% lower and more variable than the daytime because of the uncertainty of the calibration constants. If the calibration process is more precise, the combination of star and sun or sky photometry system can monitor the air pollution day and night constantly.

Keywords

References

  1. Alados-Arboledas, L., D. Muller, J. L. Guerrero-Rascado, F. Navas-Guzman, D. Perez-Ramirez, and F. J. Olmo, 2011: Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star-and sun-photometry. Geophys. Res. Lett., 38, L01807.
  2. Barreto, A., E. Cuevas, B. Damiri, C. Guirado, T. Berkoff, A. J. Berjon, Y. Hernandez, F. Almansa, and M. Gil, 2013: A new method for nocturnal aerosol measurements with a lunar photometer prototype. Atmos. Meas. Tech., 6, 585-598. https://doi.org/10.5194/amt-6-585-2013
  3. Berkoff, T. A., M. Sorokin, T. Stone, T. F. Eck, R. Hoff, E. Welton, and B. Holben, 2011: Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source. J. Atmos. Oceanic Tech., 28, 1297-1306. https://doi.org/10.1175/JTECH-D-10-05036.1
  4. Gerasopoulos, E., V. Amiridis, S. Kazadzis, P. Kokkalis, K. Eleftheratos, M. O. Andreae, T. W. Andreae, H. El-Askary, and C. S. Zerefos, 2011: Three-year ground based measurements of aerosol optical depth over the Eastern Mediterranean: the urban environment of Athens. Atmos. Chem. Phys., 11, 2145-2159. https://doi.org/10.5194/acp-11-2145-2011
  5. Harrison, L., and J. Michalsky, 1994: Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl. Opt., 33, 5126-5132. https://doi.org/10.1364/AO.33.005126
  6. Holben, B. N., and Coauthors, 1998: AERONET-A federation instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  7. Herber, A., L. W. Thomason, H. Gernandt, U. Leiterer, D. Nagel, K.-H. Schulz, J. Kaptur, T. Albrecht, and J. Notholt, 2002: Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res., 107, AAC 6-1-AAC 6-13.
  8. Howell, S. B., 2006: Handbook of CCD Astronomy. Cambridge University Press, 208 pp.
  9. Iqbal, M., 1983: An Introduction to Solar Radiation. Academic Press, 390 pp.
  10. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovermental Panel on Climate Change. Cambridge University Press, 1535 pp.
  11. Jeong, M.-J., 2013: Retrieval of atmospheric optical thickness from digital images of the moon. Korean J. Remote Sens., 29, 555-568. https://doi.org/10.7780/kjrs.2013.29.5.11
  12. Liou, K. N., 2002: An Introduction to Atmospheric Radiation 2nd Ed., Academic Press, 583 pp.
  13. Liu, J., Y. Zheng, Z. Li, and R. Wu, 2008: Ground-based remote sensing of aerosol optical properties in one city in Northwest China. Atmos. Res., 89, 194-205. https://doi.org/10.1016/j.atmosres.2008.01.010
  14. Lubin, D., and A. M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic. Nature, 439, 453-356. https://doi.org/10.1038/nature04449
  15. Mitcell, R. M., and B. W. Forgan, 2003: Aerosol measurement in the Australian outback: Intercomparison of sun photometers. J. Atmos. Oceanic Tech., 20, 54-66. https://doi.org/10.1175/1520-0426(2003)020<0054:AMITAO>2.0.CO;2
  16. Perez-Ramirez, D., H. Lyamani, F. J. Olmo, and L. Alados-Arboledas, 2011, Improvements in star photometry for aerosol characterizations. J. Aerosol Sci., 42, 737-745. https://doi.org/10.1016/j.jaerosci.2011.06.010
  17. Perez-Ramirez, D., B. Ruiz, J. Aceituno, F. J. Olmo, and L. Aldos-Arboledas, 2008: Application of sun/star photometry to derive the aerosol optical depth. Int. J. Remote Sens., 29, 5113-5132. https://doi.org/10.1080/01431160802036425
  18. Perez-Ramirez, D., H. Lyamani, F. J. Olmo, D. N. Whiteman, and L. Alados-Arboledas, 2012a: Columnar aerosol properties from sun-and-star photometry: statistical comparisons and day-to-night dynamic. Atmos. Chem. Phys., 12, 9719-9738. https://doi.org/10.5194/acp-12-9719-2012
  19. Perez-Ramirez, D., H. Lyamani, F. J. Olmo, D. N. Whiteman, F. Navas-Guzmán, and L. Alados-Arboledas, 2012b: Cloud screening and quality control algorithm for star photometer data:assessment with lidar measurements and with all-sky images. Atmos. Meas. Tech., 5, 1585-1599. https://doi.org/10.5194/amt-5-1585-2012
  20. Shaw, G. E., 1983: Sun photometry. Bull. Amer. Meteor. Soc., 64, 4-10. https://doi.org/10.1175/1520-0477(1983)064<0004:SP>2.0.CO;2
  21. Song, H.-J., B.-J. Sohn, H.-W. Chun, Y. Chun, and S.-S. Lee, 2014: Improved cloud screening method for the analysis of sky radiometer measurements and application to Asian dust detection. J. Meteor. Soc. Japan, 92A, 167-183. https://doi.org/10.2151/jmsj.2014-A11
  22. Smirnov, A., B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, 2000: Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ., 73, 337-349. https://doi.org/10.1016/S0034-4257(00)00109-7
  23. Tanaka, M., T. Nakajima, and M. Shiobara, 1986: Calibration of a sunphotometer by simultaneous measurements of direct-solar and circumsolar radiations. Appl. Opt., 25, 1170-1176. https://doi.org/10.1364/AO.25.001170
  24. Zhang, Y., and Coauthors, 2012: Aerosol daytime variations over North and South America derived from multiyear AERONET measurements. J. Geophys. Res., 117, D05211.