참고문헌
- 교육인적자원부(2008). 교육인적자원부 고시 제2006-75호 및 제2007-79호에 따른 중학교 교육과정 해설(III) 수학, 과학, 기술.가정.
- 김서령 외(2014). 중학교 수학 2. 서울: 천재교육.
- 김성기, 김도한, 계승혁(2004). 해석개론. 서울: 서울대학교 출판부.
- 김흥기(2004). 중학교에서 순환소수 취급과 무리수 도입에 관한 고찰. 수학교육학연구, 14(1), pp.1-17.
- 이준열 외(2012). 중학교 수학 3. 서울: 천재교육.
- 이지현(2014). 무한소수 기호: 불투명성과 투명성, 수학교육학연구, 24(4), pp. 587-597.
- 조한혁, 최영기(1999). 정적 동적 관점에서의 순환소수. 학교수학, 1(2), pp. 605-615.
- 최용준 외(2011). 중학교 수학 3. 서울: 천재교육.
- Abian, A. (1981). Calculus must consist of the study of real numbers in their decimal representation and not of the study of an abstract complete ordered field or nonstandard real numbers. International Journal of Mathematical Education in Science and Technology, 12(4), pp. 465-472. https://doi.org/10.1080/0020739810120417
- Bergsten, C., Jablonka, E., & Klisinska, A. (2010). A remark on didactic transposition theory. In Mathematics and mathematics education: Cultural and social dimensions: Proceedings of MADIF7, The Seventh Mathematics Education Research Seminar, Stockholm, January 26-27. 2010. Linkoping: Svensk forening for matematikdidaktisk forskning (SMDF).
- Bloch, E. D.(2011). The real numbers and real analysis. New York: Springer.
-
Bronner, A. (1997). Les rapports d'enseignants de troisieme et de seconde aux objets <
> et < >. Recherches en didactique des mathematiques, 17(3), 55-80. - Burns, R. P.(2000). Numbers and functions: steps to analysis. Cambridge: Cambridge University Press.
- Djebali, S. (2004). The practice of teaching tertiary mathematical analysis. discussion document.
- Ervynck, G. (1994). Students' conceptions of infinity in the calculus. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 4(1), 84-96.
- Fischbein, E., Jehiam, R., & Cohen, D. (1995). The concept of irrational numbers in high school students and prospective teachers. Educational Studies in Mathematics, 29(1), pp. 29-44. https://doi.org/10.1007/BF01273899
- Forbes, J. E. (1967). The most difficult step in the teaching of school mathematics: from rational numbers to real numbers-with meaning. School Science and Mathematics, 67, pp. 799-813. https://doi.org/10.1111/j.1949-8594.1967.tb15293.x
- Furinghetti, F. (2000). The history of mathematics as a coupling link between secondary and university teaching. International Journal of Mathematical Education in Science and Technology, 31(1), 43-51. https://doi.org/10.1080/002073900287372
- Klein, F.(1908). Elementary Mathematics from an Advanced Standpoint: arithmetic, algebra, analysis. Cosimo, Inc.
- Korner, T. W. (2003). A companion to analysis: a second first and first second course in analysis (Vol. 62). Providence, R.I. : American Mathematical Soc.
- Li, L.(2011). A new approach to the real numbers. available at http://arxiv.org/abs/1101.1800.
- Gonzalez-Martin, A. S., Giraldo, V., & Souto, A. M. (2013). The introduction of real numbers in secondary education: an institutional analysis of textbooks. Research in Mathematics Education, 15(3), 230-248. https://doi.org/10.1080/14794802.2013.803778
- Rudin, W. (1976). Principles of mathematical analysis (Vol. 3). New York: McGraw-Hill.
- Savizi, B., Semnani, A. S., Zadeh, M. H. B.(2013). Inconsistency of students' mental object of numbers with irrational numbers, Life Science Journal, 10(1), pp.762-771.
- Wozniak, F., Bosch, M., Artaud, M.(2015). The anthropological theory of the didactic. (http://www.ardm.eu/contenu/yves-chevallard-english)
- Zazkis, R., & Sirotic, N. (2010). Representing and defining irrational numbers: exposing missing link. CBMS Issues in Mathematics Eduction 16. American Mathematical Society.