유리수와 무리수의 합집합을 넘어서: 실수가 자명하다는 착각으로부터 어떻게 벗어날 수 있는가?

Beyond the Union of Rational and Irrational Numbers: How Pre-Service Teachers Can Break the Illusion of Transparency about Real Numbers?

  • 투고 : 2015.06.04
  • 심사 : 2015.08.10
  • 발행 : 2015.08.31

초록

유리수에서 실수로의 확장 혹은 무리수의 존재성을 수학적으로 정당화하기 위해서는 완비성 공리가 필요하므로, 실수의 도입은 학교수학에서 가장 가르치기 어려운 주제 중 하나이다. 이 연구에서는 실수를 '유리수와 무리수의 합집합'으로 정의하는 학교수학의 교수학적 변환이 어떠한 교수학적 공백을 남겨놓을 수 있는지를 살펴보고, 유리수에서 실수로의 수 체계 확장의 이유, 임의의 비순환 무한소수의 존재 이유 등에 대한 예비교사들의 설명을 분석하여 대학수학의 학습에도 불구하고 예비교사들의 실수에 대한 피상적인 이해를 구체적으로 확인하였다. 교수학적 공백을 인식하고 학교수학과 대학수학을 연결함으로서, 예비교사들이 실수 개념이 자명하다는 착각으로부터 어떻게 벗어날 수 있었는지를 논의하였다.

The introduction of real numbers is one of the most difficult steps in the teaching of school mathematics since the mathematical justification of the extension from rational to real numbers requires the completeness property. The author elucidated what questions about real numbers can be unanswered as the "institutional didactic void" in school mathematics defining real numbers as the union of the rational and irrational numbers. The pre-service teachers' explanations on the extension from rational to real numbers and the raison d'$\hat{e}$tre of arbitrary non-recurring decimals showed the superficial and fragmentary understanding of real numbers. Connecting school mathematics to university mathematics via the didactic void, the author discussed how pre-service teachers could break the illusion of transparency about the real number.

키워드

참고문헌

  1. 교육인적자원부(2008). 교육인적자원부 고시 제2006-75호 및 제2007-79호에 따른 중학교 교육과정 해설(III) 수학, 과학, 기술.가정.
  2. 김서령 외(2014). 중학교 수학 2. 서울: 천재교육.
  3. 김성기, 김도한, 계승혁(2004). 해석개론. 서울: 서울대학교 출판부.
  4. 김흥기(2004). 중학교에서 순환소수 취급과 무리수 도입에 관한 고찰. 수학교육학연구, 14(1), pp.1-17.
  5. 이준열 외(2012). 중학교 수학 3. 서울: 천재교육.
  6. 이지현(2014). 무한소수 기호: 불투명성과 투명성, 수학교육학연구, 24(4), pp. 587-597.
  7. 조한혁, 최영기(1999). 정적 동적 관점에서의 순환소수. 학교수학, 1(2), pp. 605-615.
  8. 최용준 외(2011). 중학교 수학 3. 서울: 천재교육.
  9. Abian, A. (1981). Calculus must consist of the study of real numbers in their decimal representation and not of the study of an abstract complete ordered field or nonstandard real numbers. International Journal of Mathematical Education in Science and Technology, 12(4), pp. 465-472. https://doi.org/10.1080/0020739810120417
  10. Bergsten, C., Jablonka, E., & Klisinska, A. (2010). A remark on didactic transposition theory. In Mathematics and mathematics education: Cultural and social dimensions: Proceedings of MADIF7, The Seventh Mathematics Education Research Seminar, Stockholm, January 26-27. 2010. Linkoping: Svensk forening for matematikdidaktisk forskning (SMDF).
  11. Bloch, E. D.(2011). The real numbers and real analysis. New York: Springer.
  12. Bronner, A. (1997). Les rapports d'enseignants de troisieme et de seconde aux objets <> et <>. Recherches en didactique des mathematiques, 17(3), 55-80.
  13. Burns, R. P.(2000). Numbers and functions: steps to analysis. Cambridge: Cambridge University Press.
  14. Djebali, S. (2004). The practice of teaching tertiary mathematical analysis. discussion document.
  15. Ervynck, G. (1994). Students' conceptions of infinity in the calculus. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 4(1), 84-96.
  16. Fischbein, E., Jehiam, R., & Cohen, D. (1995). The concept of irrational numbers in high school students and prospective teachers. Educational Studies in Mathematics, 29(1), pp. 29-44. https://doi.org/10.1007/BF01273899
  17. Forbes, J. E. (1967). The most difficult step in the teaching of school mathematics: from rational numbers to real numbers-with meaning. School Science and Mathematics, 67, pp. 799-813. https://doi.org/10.1111/j.1949-8594.1967.tb15293.x
  18. Furinghetti, F. (2000). The history of mathematics as a coupling link between secondary and university teaching. International Journal of Mathematical Education in Science and Technology, 31(1), 43-51. https://doi.org/10.1080/002073900287372
  19. Klein, F.(1908). Elementary Mathematics from an Advanced Standpoint: arithmetic, algebra, analysis. Cosimo, Inc.
  20. Korner, T. W. (2003). A companion to analysis: a second first and first second course in analysis (Vol. 62). Providence, R.I. : American Mathematical Soc.
  21. Li, L.(2011). A new approach to the real numbers. available at http://arxiv.org/abs/1101.1800.
  22. Gonzalez-Martin, A. S., Giraldo, V., & Souto, A. M. (2013). The introduction of real numbers in secondary education: an institutional analysis of textbooks. Research in Mathematics Education, 15(3), 230-248. https://doi.org/10.1080/14794802.2013.803778
  23. Rudin, W. (1976). Principles of mathematical analysis (Vol. 3). New York: McGraw-Hill.
  24. Savizi, B., Semnani, A. S., Zadeh, M. H. B.(2013). Inconsistency of students' mental object of numbers with irrational numbers, Life Science Journal, 10(1), pp.762-771.
  25. Wozniak, F., Bosch, M., Artaud, M.(2015). The anthropological theory of the didactic. (http://www.ardm.eu/contenu/yves-chevallard-english)
  26. Zazkis, R., & Sirotic, N. (2010). Representing and defining irrational numbers: exposing missing link. CBMS Issues in Mathematics Eduction 16. American Mathematical Society.