DOI QR코드

DOI QR Code

Effects of Lycopene on the Expression of Lipid Metabolism, Glucose Transport and Pro-Inflammatory Related Genes in Chickens

라이코펜 첨가 급여가 닭의 지방대사, 포도당 수송 및 친염증 유전자 발현에 미치는 영향

  • Jang, In Surk (Dept. of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Moon, Yang Soo (Dept. of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology)
  • 장인석 (경남과학기술대학교 동물생명과학과) ;
  • 문양수 (경남과학기술대학교 동물생명과학과)
  • Received : 2015.08.20
  • Accepted : 2015.09.14
  • Published : 2015.09.30

Abstract

The present study aimed to investigate the effects of lycopene on hepatic metabolic- and immune-related gene expression in laying hens. A total of 48 25-week-old White Leghorn hens were randomly allocated into four groups consisting of four replicates of three birds: control (basal diet), T1 (basal diet + 10 mg/kg of tomato powder-containing lycopene), T2 (basal diet + 10 mg/kg of micelles of tomato powder-containing lycopene), and T3 (basal diet + 10 mg/kg of purified lycopene). Chickens were fed ad libitum for 5 weeks, and then total RNA was extracted from the livers for quantitative RT-PCR analysis. Peroxisome proliferator-activated receptor ${\gamma}$ (PPAR${\gamma}$) expression was decreased in the liver of chickens after lycopene supplementation (P<0.05). Micellar lycopene supplementation decreased the expression of PPAR${\gamma}$ target genes including fatty acid binding protein 4 (FABP4) and fatty acids synthase (FASN) in the T2 group (P<0.05). Sterol regulatory element-binding protein 2 (SREBP2) and C/EBP-${\alpha}$ were also downregulated in hens fed with micellar lycopene (P<0.05). Glucose transporter 8 (GLUT-8) was upregulated in the T2 and T3 groups (P<0.05). However, the expression of carnitine palmitoyltransferase 1 (CPT-1) was not changed by lycopene supplementation. Pro-inflammatory cytokines such as tumor necrosis factor ${\alpha}$ (TNF-${\alpha}$) and interleukin 6 (IL-6) were downregulated by lycopene supplementation (P<0.05). These data suggest that the type of lycopene supplementation is critical and that micelles of tomato powder-containing lycopene may play an important role in the modulation of lipid metabolism and immunity in chickens.

라이코펜은 항산화제로서 많이 알려져 있지만, 최근에는 포유동물에서 염증 관련 면역과 지방대사 조절자로서 관심의 대상이 되기 시작하였다. 본 연구는 산란계에서 라이코펜의 가공 및 급이형태가 지방대사, 지방산 및 포도당 운반, 면역관련 유전자들의 발현에 미치는 영향을 관찰하고자 실시하였다. 백색레그혼(25주령) 48수를 lycopene의 첨가원에 따라 대조군(CON, basal diet(BD)), 토마토 건조분말 급여군(T1, BD+tomato powder-containing 10 mg lycopene/kg 사료), 토마토 건조분말 유화처리군(T2, BD+micellar of tomato powder-containing 10 mg lycopene/kg 사료) 및 정제 lycopene 급여군 (T3, BD+purified 10 mg lycopene/kg 사료) 등 모두 4처리구로 설정하여 5주간 사양시험을 실시하였다. 시험 종료 후 각 개체의 간으로부터 total RNA를 추출하고 real-time PCR을 이용하여 유전자들의 발현을 분석하였다. 라이코펜을 급여받은 닭은 급여형태와 관계없이 모두 PPAR${\gamma}$의 발현을 억제하였다(P<0.05). 지방합성효소 유전자 FASN의 발현은 T2에서 효과적으로 감소하였으나(P<0.05), T1, T3에서는 영향이 없었다. SREBP2와 C/EBP${\alpha}$ 또한 T2에서 효과적으로 유전자 발현이 억제됨을 보였다. 세포 내 포도당 흡수기능을 하는 GLUT8은 T2와 T3에서 유전자 발현이 증가하였다(P<0.05). 지방산 산화를 위한 지방산 운반체인 CPT-1 유전자는 라이코펜에 의한 영향을 받지 않았다. 면역 관련 염증인자인 TNF${\alpha}$와 IL6는 라이코펜에 의하여 효과적으로 그 발현이 억제되었다(P<0.05). 본 연구결과는 라이코펜의 급여 형태가 지방대사 관련 유전자 발현에 영향을 미치며, 그 중 유화처리된 라이코펜이 지방대사, 포도당 및 면역반응에 더 효과적 급이 수단이 될 수 있음을 보여주었다.

Keywords

References

  1. Boulanger A1, McLemore P, Copeland NG, Gilbert DJ, Jenkins NA, Yu SS, Gentleman S, Redmond TM, Boulanger 2003 Identification of beta-carotene 15, 15'-monooxygenase as a peroxisome proliferator-activated receptor target gene. FASEB J. 17(10):1304-1306. https://doi.org/10.1096/fj.02-0690fje
  2. Braun EJ, Sweazea KL 2008 Glucose regulation in birds. Comp Biochem Physiol B Biochem Mol Biol. 151(1):1-9. https://doi.org/10.1016/j.cbpb.2008.05.007
  3. Brown MS, Goldstein JL 1997 The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 89(3):331-340. https://doi.org/10.1016/S0092-8674(00)80213-5
  4. Chung HY, Rasmussen HM, Johnson EJ 2004 Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. J Nutr. 134(8):1887-1893. https://doi.org/10.1093/jn/134.8.1887
  5. Damron BL, Goodson SR, Harms RH, Janky DM, Wilson HR 1984 Beta-carotene supplementation of laying hen diets. Br Poult Sci. 25(3):349-352. https://doi.org/10.1080/00071668408454875
  6. Desvergne B, Wahli W 1999 Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr Rev. 20 (5):649-688. https://doi.org/10.1210/er.20.5.649
  7. Dupont J, Dagou C, Derouet M, Simon J, Taouis M 2004 Early steps of insulin receptor signaling in chicken and rat: Apparent refractoriness in chicken muscle. Domest Anim Endocrinol. 26(2):127-142. https://doi.org/10.1016/j.domaniend.2003.09.004
  8. Englmaierova M, Bubancova I, Vit T, Skrivan M 2011 The effect of lycopene and vitamin E on growth performances, quality and oxidative stability of chicken leg meat. Czech J Anim Sci. 56: 536-543.
  9. Feng D, Ling WH, Duan RD 2010 Lycopene suppresses LPSinduced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-kappaB in macrophages. Inflamm Res. 59(2):115-121. https://doi.org/10.1007/s00011-009-0077-8
  10. Ford NA, Elsen AC, Erdman JW Jr 2013 Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulate carotenoid and lipid metabolism in mice. Nutr Res. 33(9):733-742. https://doi.org/10.1016/j.nutres.2013.07.007
  11. Fuhrman B, Elis A, Aviram M 1997 Hypocholesterolemic effect of lycopene and beta-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem Biophys Res Commun. 233(3):658-662. https://doi.org/10.1006/bbrc.1997.6520
  12. Gouranton E, Thabuis C, Riollet C, Malezet-Desmoulins C, Yazidi C, Amiot MJ, Borel P, Landrier JF 2011 Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue. J Nutr Biochem. 22(7):642-648. https://doi.org/10.1016/j.jnutbio.2010.04.016
  13. Grobas S, Mendez J, Lopez BC, De BC, Mateos GG 2002 Effect of vitamin E and A supplementation on egg yolk alpha-tocopherol concentration. Poult Sci. 81(3):376-381. https://doi.org/10.1093/ps/81.3.376
  14. Huang CS, Liao JW, Hu ML 2008 Lycopene inhibits experimental metastasis of human hepatoma SK-Hep-1 cells in athymic nude mice. J Nutr. 138(3):538-543. https://doi.org/10.1093/jn/138.3.538
  15. Karin Ried, Peter Fakler 2011 Protective effect of lycopene on serum cholesterol and blood pressure: Meta-analyses of intervention trials. Maturitas. 68(4):299-310. https://doi.org/10.1016/j.maturitas.2010.11.018
  16. Kirunda DF, Scheideler SE, McKee SR 2001 The efficacy of vitamin E (DL-alpha-tocopheryl acetate) supplementation in hen diets to alleviate egg quality deterioration associated with high temperature exposure. Poult Sci. 80(9):1378-1383. https://doi.org/10.1093/ps/80.9.1378
  17. Kono T, Nishida M, Nishiki Y, Seki Y, Sato K, Akiba Y 2005 Characterisation of glucose transporter (GLUT) gene expression in broiler chickens. Br Poult Sci. 46(4):510-515. https://doi.org/10.1080/00071660500181289
  18. Leshchinsky TV, Klasing KC 2001 Relationship between the level of dietary vitamin E and the immune response of broiler chickens. Poult Sci. 80(11):1590-1599. https://doi.org/10.1093/ps/80.11.1590
  19. Livak KJ, Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods. 25(4):402-408. https://doi.org/10.1006/meth.2001.1262
  20. Lobo GP, Amengual J, Li HN, Golczak M, Bonet ML, Palczewski K, von Lintig J 2010 Beta, beta-carotene decreases peroxisome proliferator receptor gamma activity and reduces lipid storage capacity of adipocytes in a beta, betacarotene oxygenase 1-dependent manner. J Biol Chem. 285 (36):27891-27899. https://doi.org/10.1074/jbc.M110.132571
  21. Mao M, Lei H, Liu Q, He R, Zuo Z, Zhang N, Zhou C 2014 Lycopene inhibits neointimal hyperplasia through regulating lipid metabolism and suppressing oxidative stress. Mol Med Rep. 10(1):262-268. https://doi.org/10.3892/mmr.2014.2186
  22. Nguyen, ML, Schwartz SJ 1999 Lycopene; Chemical and biological properties. Foodtechnology. 53:38-45.
  23. Nockels CF, Lopez GA, Phillips RW 1973 Influence of vitamins A and C on corticosterone and carbohydrate metabolism in chickens. Poult Sci. 52(4):1261-1269. https://doi.org/10.3382/ps.0521261
  24. Palozza P, Calviello G, Emilia De Leo M, Serini S, Bartoli GM 2000 Canthaxanthin supplementation alters antioxidant enzymes and iron concentration in liver of Balb/c mice. J Nutr. 130(5):1303-1308. https://doi.org/10.1093/jn/130.5.1303
  25. Rao AV 2002 Lycopene, tomatoes, and the prevention of coronary heart disease. Exp Biol Med. 227(10):908-913. https://doi.org/10.1177/153537020222701011
  26. Ried K, Fakler P 2011 Protective effect of lycopene on serum cholesterol and blood pressure: Meta-analyses of intervention trials. Maturitas. 68(4):299-310. https://doi.org/10.1016/j.maturitas.2010.11.018
  27. Sahin N, Sahin K, Onderci M, Karatep M, Smith MO, Kucuk O 2006 Effects of dietary lycopene and vitamin E on egg production, antioxidant status and cholesterol levels in Japanes quail. Asian-Australasian Journal of Animal Sciences. 19:224-230.
  28. Sahin N, Orhan C, Tuzcu M. Sahin K, Kucuk O 2008 The effects of tomato powder supplementation on performance and lipid peroxidation in quail. Poult Sci. 87:276-283. https://doi.org/10.3382/ps.2007-00207
  29. SAS 1996 User's Guide: Statistics Version 6.12 Ed. SAS Inst., Inc., Cary, NC.
  30. Sell JL, Trampel DW, Griffith RW 1997 Adverse effects of Escherichia coli infection of turkeys were not alleviated by supplemental dietary vitamin E. Poult Sci. 76(12):1682-1687. https://doi.org/10.1093/ps/76.12.1682
  31. Sluijs I, Beulens JW, Grobbee DE, van der Schouw YT 2009 Dietary carotenoid intake is associated with lower prevalence of metabolic syndrome in middle-aged and elderly men. J Nutr. 139(5):987-992. https://doi.org/10.3945/jn.108.101451
  32. Sohn SH, Jang IS, An YS, Moon YS 2015 Effects of high stocking density on the expression of metabolic related genes in two strains of chickens. Kor J Poult Sci. 42(1):51-59. https://doi.org/10.5536/KJPS.2014.42.1.51
  33. Sun X, Zhang H, Sheikhahmadi A, Wang Y, Jiao H, Lin H, Song Z 2015 Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). Int J Biometeorol. 59(2):127-135. https://doi.org/10.1007/s00484-014-0829-1
  34. Tan HL, Moran NE, Cichon MJ, Riedl KM, Schwartz SJ, Erdman JW Jr, Pearl DK, Thomas-Ahner JM, Clinton SK 2014 ${\beta}$-Carotene-9',10'-oxygenase status modulates the impact of dietary tomato and lycopene on hepatic nuclear receptor-, stress-, and metabolism-related gene expression in mice. J Nutr. 144(4):431-439. https://doi.org/10.3945/jn.113.186676
  35. Tinker DA, Brosnan JT, Herzberg GR. 1986 Interorgan metabolism of amino acids, glucose, lactate, glycerol and uric acid in the domestic fowl (Gallus domesticus). Biochem J. 240(3):829-836. https://doi.org/10.1042/bj2400829
  36. Warriss PD, Kestin SC, Brown SN, Bevis EA. 1988 Depletion of glycogen reserves in fasting broiler chickens. Br Poult Sci. 29(1):149-154. https://doi.org/10.1080/00071668808417036
  37. Wertz K, Siler U, Goralczyk R 2004 Lycopene: Modes of action to promote prostate health. Arch Biochem Biophys. 430(1):127-134. https://doi.org/10.1016/j.abb.2004.04.023
  38. Zaripheh S, Nara TY, Nakamura MT, Erdman JW Jr 2006 Dietary lycopene downregulates carotenoid 15,15'-monooxygenase and PPAR-gamma in selected rat tissues. J Nutr. 136 (4):932-938. https://doi.org/10.1093/jn/136.4.932

Cited by

  1. Effects of Coenzyme Q10 on the Expression of Genes involved in Lipid Metabolism in Laying Hens vol.43, pp.1, 2016, https://doi.org/10.5536/KJPS.2016.43.1.47