References
- N. Crouseilles, T. Respanud, E. Sonnendrucker, A Forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Computer Physics Communications, Vol. 180, pp. 1730-1745, 2009. https://doi.org/10.1016/j.cpc.2009.04.024
- E. Sonnendrucker, J. Roche, P. Bertrand, A. Ghizzo, The semi-lagrangian method for the numerical resolution of the Vlasov equation. Journal of Computer Physics, Vol. 149, pp. 201-220, 1999. https://doi.org/10.1006/jcph.1998.6148
- A. Staniforth, J. Cote, Semi-Lagrangian integration schemes for atmospheric models A review. Monthly Weather Review, Vol. 119, pp. 2206-2223, 1991. https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2
- M. Zerroukat, N. Wood, A. Staniforth, A monotonic and positive-definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme. Q. J. R. Meteorol. Soc., Vol. 131, pp. 2923-2936, 2005. https://doi.org/10.1256/qj.04.97
- M. Zerroukat, N. Wood, A. Staniforth, The Parabolic Spline Method (PSM) for conservative transport problems. International Journal of Numerical Methods Fluids, Vol. 51, pp. 1297-1318, 2006. https://doi.org/10.1002/fld.1154
- J. M. Qui, A. Christlieb, A Conservative high order semi-Lagrangian WENO method for the Vlasov equation. Journal of Computational Physics, Vol. 229, pp. 1130-1149, 2010. https://doi.org/10.1016/j.jcp.2009.10.016
- C. Z. Cheng, G. Knorr, The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, pp. 330-351, 1976. https://doi.org/10.1016/0021-9991(76)90053-X
- J. A. Carrillo, F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-Based models. SIAM Journal on Scientific Computing, Vol. 29, No. 3, pp. 1179-1206, 2007. https://doi.org/10.1137/050644549
- S. G. Wallis, J. R. Manson, Accurate numerical simulation of advection using large time steps. International Journal for Numerical Methods in Fluids, Vol. 24, pp. 127-139, 1997. https://doi.org/10.1002/(SICI)1097-0363(19970130)24:2<127::AID-FLD477>3.0.CO;2-R
- G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes. Journal of Computational Physics, Vol. 126, pp. 202-228, 1996. https://doi.org/10.1006/jcph.1996.0130
- R. J. Leveque, High-resolution Conservative Algorithms for Advection in Incompressible Flow. SIAM Journal on Numerical Analysis, Vol. 33, No. 2, pp. 627-665, 1996. https://doi.org/10.1137/0733033
- X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes. Journal of Computational Physics, Vol. 115, pp. 200-212, 1994. https://doi.org/10.1006/jcph.1994.1187
- C.-W. Shu, High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Review, Vol. 51, pp. 82-126, 2009. https://doi.org/10.1137/070679065
- C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, Vol. 77, No. 2, pp. 439-471, 1988. https://doi.org/10.1016/0021-9991(88)90177-5
- L. L. Takacs, A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Monthly Weather Review, Vol. 113, pp. 1050-1065, 1985. https://doi.org/10.1175/1520-0493(1985)113<1050:ATSSFT>2.0.CO;2