DOI QR코드

DOI QR Code

Subnet Selection Scheme based on probability to enhance process speed of Big Data

빅 데이터의 처리속도 향상을 위한 확률기반 서브넷 선택 기법

  • Jeong, Yoon-Su (Dept. of Information and Communication Convergence engineering, Mokwon University) ;
  • Kim, Yong-Tae (Dept. of Multimedia Engineering, Hannam, University) ;
  • Park, Gil-Cheol (Dept. of Multimedia Engineering, Hannam, University)
  • 정윤수 (목원대학교 정보통신융합공학부) ;
  • 김용태 (한남대학교 멀티미디어학부) ;
  • 박길철 (한남대학교 멀티미디어학부)
  • Received : 2015.07.07
  • Accepted : 2015.09.20
  • Published : 2015.09.28

Abstract

With services such as SNS and facebook, Big Data popularize the use of small size such as micro blogs are increasing. However, the problem of accuracy and computational cost of the search result of big data of a small size is unresolved. In this paper, we propose a subnet selection techniques based probability to improve the browsing speed of the small size of the text information from big data environments, such as micro-blogs. The proposed method is to configure the subnets to give to the attribute information of the data increased the probability data search speed. In addition, the proposed method improves the accessibility of the data by processing a pair of the connection information between the probability of the data constituting the subnet to easily access the distributed data. Experimental results showed the proposed method is 6.8% higher detection rates than CELF algorithm, the average processing time was reduced by 8.2%.

SNS와 페이스북과 같은 서비스가 대중화되면서 마이크로블로그와 같은 작은 크기의 빅 데이터 사용이 증대되고 있다. 그러나, 현재까지 작은 크기의 빅 데이터의 탐색 결과의 정확성과 계산비용은 미해결 상태로 남아있다. 본 논문에서는 빅 데이터 환경에서 마이크로블러그와 같은 작은 크기의 텍스트 정보의 탐색 속도를 향상시키기 위한 확률기반의 서브넷 선택 기법을 제안한다. 제안 기법은 데이터의 속성 정보에 확률값을 부여하여 서브넷을 구성하여 데이터 탐색 속도를 높였다. 또한, 제안 기법은 분산된 데이터를 손쉽게 접근하기 위해서 서브넷을 구성하는 데이터 의확률값 간 연계 정보를 쌍으로 처리함으로써 데이터의 접근성을 향상시켰다. 실험결과, 제안 기법은 CELF 알고리즘보다 평균 6.8% 높은 탐지율을 보였으며, 처리시간은 평균 8.2% 단축시켰다.

Keywords

References

  1. H. Hu, Y. Wen, T. S. Chua, X. Li, "Toward Scalable Systems for Big Data Anaqlytics: A Technology Tutorial", IEEE Access, vol. 2, pp. 652-687, 2014. https://doi.org/10.1109/ACCESS.2014.2332453
  2. P. Russom, "Big Data Analytics", TDWI Research Fourth Quarter, pp. 6, Dec. 2011.
  3. V. Gadepally, J. Kepner. "Big data dimensional analysis", 2014 IEEE High Performance Extreme Computing Conference(HPEC) pp. 1-6, Sep. 2014.
  4. Y. Demchenko, C. De Laat, P. Membrey, "Defining architecture components of the Big data Ecosystem", 2014 International conference on Collaboration Technologies and Systems(CTS), pp.104-112, May, 2014.
  5. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A. H. Byers, "Big Data: The Next Frontier for Innovation, Competition and Productivity", Mckinsey Global Institute, pp. 1-137. 2011.
  6. P. Shen, Y. Zhou, K. Chen, "A Probability based Subnet Selection Method for Hot Event Detection in Sina Weibo Microblogging", 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1410-1413, Aug. 2013.
  7. K. Chen, Y. Zhou, H. Zha, J. He, P. Shen, X. Yang, "Cost-Effective Node Monitoring for Online Hot Event Detection in Sina Weibo", In Proceedings of the 22nd international conference on World Wide Web, ACM. pp. 107-108, April. 2013.
  8. D. Kempe, J. Klenberg, E. Tardos, "Maximizing the spread of influence through a social netowrk", In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 137-146, Aug. 2003.
  9. K. M. P. Shrivastba, M. A. Rizvi, S. Singh, "Big Data Privacy Based on Differential Privacy a Hope for Big Data", 2014 International conference on Computational Intelligence and Communication Networks, pp. 776-781. Nov. 2014.
  10. A. Katal, M. Wazid, R. H. Goudar, "Big data: Issues, challenges, tools and Good practices ", 2013 Sixth International Conference on Contemporary Computing(IC3), pp. 404-409, Aug. 2013.
  11. Y. C. Jung. "Big Data revolution and media policy issues", KISDI Premium Report, Vol. 12, No. 2, pp. 1-22, 2012.
  12. S. H. Kim, N. U. Kim, t. M. Chung, "Attribute Relationship Evaluation Methodology for Big Data Seucrity", 2013 International Conference on IT Convergence and Security(ICITCS), pp. 1-4, Dec. 2013.
  13. S. Y. Son, "Big data, online marketing and privacy protection", KISDI Premium Report, Vol. 13, No. 1, pp.1-26, 2013.
  14. J. T. Kim, B. J. Oh, J. Y. Park, "Standard Trends for the BigData Technologies", 2013 Electronics and Telecommunications Trends, Vol. 28, No. 1, pp. 92-99, 2013.
  15. M. Paryasto, A. Alamsyah, B. Rahardjo, Kuspriyanto, "Big-data security management issues", 2014 2nd International Conference on Information and Communication Technology(ICoICT), pp. 59-63, May, 2014.