DOI QR코드

DOI QR Code

A study of Brain Micro-PET Imaging and Bindingpotential with a Different Specific Activity of 18F-Fallypride in the Small Animal

소동물에서 18F-Fallypride의 비방사능에 따른 뇌의 PET이미지와 Binding Potential 차이에 대한 연구

  • Received : 2015.04.20
  • Accepted : 2015.06.01
  • Published : 2015.09.28

Abstract

In this study, we proceed if there are any changes in binding ability of receptor-ligand in some degree of SA and in radioactive uptake from the corpus striatum based on small animal experiment in vivo based on the S.A values. By dividing 18F-Fallypride into 3 S.A values(high S.A : 43.29~74 GBq/umol, ordinary S.A : 20.72~29.23 GBq/umol, low S.A : 6.29~8.51 GBq/umol), we injected directly into the veins and performed 90 minutes of dynamic scan using Micro PET. After scanning, we compared and analyzed with Binding Potential (Binding Potential) from the bilateral striatum. high SA and low SA, ordinary SA and low SA showed significant differences. Also, in the image comparison using 18F-Fallypride show high radioactive uptake in the striatum at high SA and ordinary SA, but the radioactive uptake at low SA is lower than other two SA. Since 18F-Fallypride has affinity to dopamine D2/3 pharmacokinetic, the difference of Binding Potentials at decreased level of SA values was not that significant. However, further PET research of the corpus striatum using 18F-Fallypride is necessary because the differences in images and Binding Potentials at 6.5 times smaller SA values compared to high SA value showed were significant.

본 연구에서는 비방사능 값에 따른 소동물 in vivo실험에서 어느 정도의 비방사능에서부터 수용체-리간드의 결합능력의 변화와 선조체에서의 방사능 집적에 변화가 있는지를 규명하고자 실험을 진행하다. 18F-Fallypride을 3가지 값 ; 높은 비방사능 : 43.29~74 GBq/umol, 중간 비방사능 : 20.72~29.23 GBq/umol, 낮은 비방사능 : 6.29~8.51 GBq/umol)으로 나누어 순차적으로 혈관주사 후 Micro PET을 이용하여 90분 동적 스캔 하였다. 스캔 후 양쪽 선조체에서 Binding Potential(BP)을 구한 후 비교 분석하였다. 높은 비방사능과 낮은 비방사능, 중간 비방사능과 낮은 비방사능에서 유의한 차이가 나타났다. 또한 18F-Fallypride을 이용한 PET 영상비교에서는 높은 비방사능과 중간 비방사능에서는 선조체 에서 높은 방사능집적을 보여주었지만, 낮은 비방사능에서는 다른 두 비방사능에 비해 낮은 방사능 집적을 볼 수 있었다. 이는 18F-Fallypride의 약동학적 특성상 D2/D3에 대한 친화성이 좋기 때문에 비방사능 값이 어느 정도 떨어진 상태에서도 BP의 차이가 크지 않았다. 하지만 높은 비방사능에 비해 6.5배 낮은 비방사능 값 부터는 이미지 및 BP의 차이가 유의하게 나왔으므로 앞으로 18F-Fallyprdie을 이용한 선조체 PET연구에서는 이를 고려하여 실험 할 필요가 있을 것이다.

Keywords

References

  1. J. S. Kim1, J. S.Lee, K. C. Im, S. J. Kim, S. Y. Kim, D. S. Lee, and D. H. Moon, "Performance measurement of the microPET focus 120 scanner", J Nucl Med, Vol.48, No.9, pp.1527-1535, 2007. https://doi.org/10.2967/jnumed.107.040550
  2. 이원형, 정용안, "파킨슨병에서 18F-FDG PET의 임상이용", Nucl Med Mol Imaging, Vol.42, Supplement 1. 2008.
  3. K. M. Kim, Establishment of Parkinson's Disease Model with MPTP in the Cynomolgus Monkey (Macaca fascicularis) [dissertation], University of Science and Technology, 2003.
  4. A. L.. Rominger, E. Wagner, E. Mille, G. Boning, M. Esmaeilzadeh, B. Wangler, F. J. Gildehaus, S. Nowak, A. Bruche, K. Tatsch, P. Bartenstein, and P. Cumming, "Endogenous competition against binding of [(18)F]DMFP and [(18)F]fallypride to dopamine D(2/3) receptors in brain of living mouse", Synapse, Vol.64, No.4, pp.313-322, 2010. https://doi.org/10.1002/syn.20730
  5. Y. L.. Fujimura, H. Ito, H. Takahashi, F. Yasuno, Y. Ikoma, M. R. Zhang, S. Nanko, K. Suzuki, and T. Suhara, "Measurement of dopamine D2 receptors in living human brain using 11C-raclopride with ultra-high specific radioactivity", Nucl Med Biol, Vol.37, No.7, pp.831-835, 2010. https://doi.org/10.1016/j.nucmedbio.2010.04.138
  6. J. L. Mukherjee, Z. Y. Yang, M. K. Das, and T. Brown, "Fluorinated benzamide neuroleptics--III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-18F-fluoropropyl)-2, 3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer", Nucl Med Biol, Vol.22, No.3, pp.283-296, 1995. https://doi.org/10.1016/0969-8051(94)00117-3
  7. M. Slifstein, D. R Hwang, Y. Huang, N. Guo, Y. Sudo, R. Narendran, P. Talbot, and M. Laruelle, "In vivo affinity of 18F-fallypride for striatal and extrastriatal dopamine D2 receptors in nonhuman primates," Psychopharmacology (Berl), Vol.175 No.3, pp.274-286, 2004. https://doi.org/10.1007/s00213-004-1830-x
  8. C. Kohler, H. Hall, S. O. Ogren, and L. Gawell, "Specific in vitro and in vivo binding of 3H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D-2 receptors in the rat brain", Biochem Pharmacol, Vol.34, No.13, pp.2251-2259, 1985. https://doi.org/10.1016/0006-2952(85)90778-6
  9. L. S. L. Kegeles, M. Slifstein, X. Xu, N. Urban, J. L. Thompson, T. Moadel, J. M. Harkavy-Friedman, R. Gil, M. Laruelle, and A. Abi-Dargham, "Striatal and extrastriatal dopamine D2/D3 receptors in schizophrenia evaluated with 18F-fallypride positron emission tomography", Biol Psychiatry, Vol.68, No.7, pp.634-641, 2010. https://doi.org/10.1016/j.biopsych.2010.05.027
  10. Mario Matarrese, Dmitri Soloviev, Sergio Todde, Felice Neutro, Pasquale Petta, Assunta Carpinelli, Michael Brussermann, and Marzia Galli Kienlecorrespondence Ferruccio Fazio., "Preparation of 11C- radioligands with high specific radioactivity on a commercial PET tracer synthesizer", Nucl Med Biol, Vol.30, No.1, pp.79-83, 2003. https://doi.org/10.1016/S0969-8051(02)00353-0
  11. J. L. Noguchi, M. R. Zhang, K. Yanamoto, R. Nakao, and K. Suzuki, "In vitro binding of [(11)C]raclopride with ultrahigh specific activity in rat brain determined by homogenate assay and autoradiography", Nucl Med Biol, Vol.35, No.1, pp.19-27, 2008. https://doi.org/10.1016/j.nucmedbio.2007.09.009
  12. 안성민, 홍태기, 함준철, 김성철, "진단용 방사성 의약품의 정도관리", 한국콘텐츠학회논문지, Vol.9, No.11, 2009.
  13. B. T. L. Christian, T. K. Narayanan, B. Shi, J. Mukherjee, "Quantitation of striatal and extrastriatal D-2 dopamine receptors using PET imaging of [(18)F]fallypride in nonhuman primates", Synapse, Vol.38, No.1, pp.71-79, 2000. https://doi.org/10.1002/1098-2396(200010)38:1<71::AID-SYN8>3.0.CO;2-2
  14. K. L. Ishibashi, K. Ishii, K. Oda, H. Mizusawa, and K. Ishiwata, "Competition between 11C-raclopride and endogenous dopamine in Parkinson's disease", Nucl Med Commun, Vol.31, No.2, pp.159-166, 2010. https://doi.org/10.1097/MNM.0b013e328333e3cb