DOI QR코드

DOI QR Code

Direct-Current Dielectrophoretic Motions of a Pair of Particles due to Interactions with a Nearby Nonconducting Wall

비전도성 벽과의 상호작용에 따른 한 쌍 입자의 직류 유전영동 운동

  • Received : 2015.04.22
  • Accepted : 2015.07.31
  • Published : 2015.10.01

Abstract

The present study numerically investigated two-dimensional dielectrophoretic motions of a pair of particles suspended freely in a viscous fluid, interacting with a nearby nonconducting planar wall, under an external uniform electric field. The results show that the motions depend strongly on the set of two electric conductivity signs and the particles-wall separation gap. When both particles have the same sign, they revolve and finally align parallel to the electric field. In contrast, with different signs, they revolve in the opposite direction and finally align perpendicular to the field. Simultaneously, they are repelled to move farther away from the wall regardless of their conductivity set. With further separation from the wall, the particles-wall interaction effect diminishes and tthe particle-particle effect dominates.

본 연구에서는 외부에서 균일한 직류전기장이 벽과 평행하게 인가될 때 점성유체 안에 자유롭게 잠겨있는 한 쌍의 입자들이 근처의 비전도성 평면 벽과의 상호작용 때문에 유발되는 2차원 유전영동 운동에 대하여 수치연구를 수행하였다. 해석 결과 운동 특성은 입자들이 가지는 전기전도도 부호 조합과 입자들과 벽 사이 간격에 따라 크게 달라졌다. 두 입자가 서로 같은 전도도 부호를 가지면 입자들은 공전을 하다가 최종적으로 전기장과 평행하게 정렬한다. 반면에 서로 다른 부호를 가지면 입자들은 반대방향으로 공전하다 결국 전기장과 수직하게 정렬한다. 동시에 입자들은 전도도 조합과 무관하게 반발력을 받아 벽으로부터 멀어지는 쪽으로 이동한다. 입자들이 벽으로부터 멀리 떨어져 있을수록 입자들과 벽 사이 유전영동 상호작용 효과는 서서히 사라지며 대신 입자와 입자 사이 효과가 점점 두드러진다.

Keywords

References

  1. Ai, Y. and Qian, S., 2010, "DC Dielectrophoretic Particle-Particle Interactions and Their Relative Motions," Journal of Colloid and Interface Science, Vol. 22, pp. 448-454.
  2. Kang, S. and Maniyeri, R., "Dielectrophoretic Motions of Multiple Particles and Their Analogy with the Magnetic Counterparts," Journal of Mechanical Science and Technology, Vol. 26, pp. 3503-3513.
  3. Hossan, M. R., Dillon, R., Roy, A. K. and Dutta, P., 2013, "Modeling and Simulation of Dielectrophoretic Particle-Particle Interactions and Assembly," Journal of Colloid and Interface Science, Vol. 394, pp. 619-629. https://doi.org/10.1016/j.jcis.2012.12.039
  4. Kang, S., 2014, "Dielectrophoretic Motion of Two Particles with Diverse Sets of the Electric Conductivity under a Uniform Electric Field," Computers and Fluids, Vol. 105, pp. 231-243. https://doi.org/10.1016/j.compfluid.2014.09.029
  5. Xie, C., Chen, B., Ng, C.-O., Zhou, X. and Wu, J., 2015, "Numerical Study of Interactive Motion of Dielectrophoretic Particles," European Journal of Mechanics B/Fluids, Vol. 49, pp. 208-216. https://doi.org/10.1016/j.euromechflu.2014.08.007
  6. Kang, S., 2015, "Direct-Current Dielectrophoretic Motions of a Single Particle due to Interactions with a Nearby Nonconducting Wall," Trans. Korean Soc. Mech. Eng. B, Vol. 39, pp. 425-433. https://doi.org/10.3795/KSME-B.2015.39.5.425
  7. Liu, X.-D., Fedkiw, R. P. and Kang, M., 2000, "A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains," Journal of Computational Physics, Vol. 160, pp. 151-178. https://doi.org/10.1006/jcph.2000.6444
  8. Kim, J., Kim, D. and Choi, H., 2001, "An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries," Journal of Computational Physics, Vol. 171, pp. 132-150. https://doi.org/10.1006/jcph.2001.6778
  9. Glowinski, R., Pan, T. W., Hesla, T. I. and Joseph, D. D., 1999, "A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows," International Journal of Multiphase Flow, Vol. 25, pp. 755-794. https://doi.org/10.1016/S0301-9322(98)00048-2