• Received : 2015.08.06
  • Accepted : 2015.08.19
  • Published : 2015.09.25


In this article, the linear quadratic (LQ) optimal guidance laws with arbitrary weighting functions are introduced. The optimal guidance problems in conjunction with the control effort weighed by arbitrary functions are formulated, and then the general solutions of these problems are determined. Based on these investigations, we can know a lot of previous optimal guidance laws belong to the proposed results. Additionally, the proposed results are compared with other results from the generalization standpoint. The potential importance on the proposed results is that a lot of useful new guidance laws providing their outstanding performance compared with existing works can be designed by choosing weighting functions properly. Accordingly, a new optimal guidance law is derived based on the proposed results as an illustrative example.



  1. A. E. Bryson Jr. and Y.-C. Ho, Applied Optimal Control, New York: Wiley (1975)
  2. F. L. Lewis, W. L. Syrmos, Optimal Control, John Wiley and Sons, Inc (1995)
  3. J. Z. Ben-Asher and I. Yaesh, Advances in Missile Guidance Theory, 180, Reston: AIAA (1988).
  4. C. P. Mracek and D. B. Ridgely, Missile Longitudinal Autopilots: Connections between Optimal control and Classical Topologies, AIAA Guid. Nav. Contr. Conf. Exh., San Francisco, California (2015)
  5. A. Budiyono and S. S. Wibowo, Optimal Tracking Controller Design for a Small Scale Helicopter, J. Bionic. Eng., 4(2) (2007), 271-280.
  6. R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, T. ASME-J. Basic Eng., (1960), 35-40.
  7. C. L. Lin and Y. Y. Chen, Design of Advanced Guidance Law against High Speed Attacking Target, Proc. Natl. Sci. Counc. ROC(A), 23(1) (1999), 60-74.
  8. M. Idan, O. Golan, and M. Guelman, Optimal Planar Interception with Terminal Constraints, J. Guid. Control Dynam., 18(6) (1995), 1273-1279.
  9. H. S. Shin, J. I. Lee, A. Tsourdos, and M. J. Tahk, Homing Guidance Law for Reducing Sensitivity on Heading Error, AIAA Guid. Nav. Contr. Conf., Minneapolis, Minnesota, (2012).
  10. T. L. Song, S. J. Shin, and H. Cho, Impact-Angle-Control for Planar Engagements, IEEE T. Aero. Elec. Sys., 35(4) (1999), 1439-1444.
  11. C. K. Ryoo, H. Cho, and M. J. Tahk, Optimal Guidance Laws with Terminal Impact Angle Constraints, J. Guid. Control Dynam., 28(4) (2005), 724-732.
  12. C. K. Ryoo, H. Cho and M. J. Tahk, Time-to-Go Weighted Optimal Guidance with Impact Angle Constraints, IEEE T. Contr. Sys. Tech., 14(3) (2006), 483-492.
  13. I. S. Jeon, J. I. Lee, and M. J. Tahk, Impact-Time-Control Guidance Law for Anti-ship Missiles, IEEE T. Contr. Sys. Tech., 14(2) (2006), 260-266.
  14. J. I. Lee, I. S. Jeon, and M. J. Tahk, Guidance Law to Control Impact Time and Angle, IEEE T. Aero. Elec. Sys., 43(1) (2007), 301-310.
  15. Y. H. Kim, C. K. Ryoo, and M. J. Tahk, Guidance Synthesis for Evasive Maneuver of anti-ship Missile against Closed-In Weapon Systems, IEEE T. Aero. Elec. Sys., 46(3) (2010), 1376-1388.
  16. J. Z. Ben-Asher, N. Farber, and S. Levinson, New Proportional Navigation Law for Ground-to-Air System, J. Guid. Control Dynam., 26(5) (2003), 822-825.
  17. J. I. Lee, I. S. Jeon, and C. H. Lee, Command Shaping Guidance Law Based on Gaussian Weighting Function, IEEE T. Aero. Elec. Sys., 50(1) (2014), 772-777.
  18. C. H. Lee, M. J. Tahk, and J. I. Lee, Generalized Formulation of Weighted Optimal Guidance Laws with Impact Angle Constraint, IEEE T. Aero. Elec. Sys., 49(2) (2013), 1317-1322.
  19. M. Y. Ryu, C. H. Lee, and M. J. Tahk, New Trajectory Shaping Guidance Law for Anti-Tank Guided Missiles, To be appeared in P I Mech. Eng. G-J. Aer., (2014)
  20. C. H. Lee, J. I. Lee, and M. J. Tahk, Sinusoidal Weighted Optimal Guidance Laws, Mech. Eng. G-J. Aer., 229(3) (2015), 534-542.
  21. P. Zarchan, Tactical and Strategic Missile Guidance, fifthEdition, Washington, DC:AIAA (2007)
  22. C. H. Lee, T. H. Kim, and M. J. Tahk, Interception Angle Control Guidance using Proportional Navigation with Error Feedback, J. Guid. Control Dynam., 36(5) (2013), 1556-1561.
  23. C. H. Lee, T. H. Kim, M. J. Tahk, and I. H. Whang, Polynomial Guidance Laws Considering Terminal Impact Angle and Acceleration Constraints, IEEE T. Aero. Elec. Sys., 49(1) (2013), 55-73.
  24. Y. I. Lee, S. H. Kim, and M. J. Tahk, Optimality of Linear Time-Varying Guidance for Impact Angle Control, IEEE T. Aero. Elec. Sys., 48(3) (2012), 2802-2817.
  25. A. Jamenson and E. Kreindler, Inverse Problems of Linear Optimal Control, SIAM J. Control, 11(1) (1973), 1-9.
  26. E. Kreindler, Optimality of Proportional Navigation, AIAA J., 11(1) (1973), 1-9.
  27. U. S. Shular and P. R. Mahapatra, The Proportional Navigation Dilemma - Pure or True?, IEEE T. Aero. Elec. Sys., 26(2) (1990), 382-392.

Cited by

  1. Practical generalized optimal guidance law with impact angle constraint pp.2041-3025, 2018,