DOI QR코드

DOI QR Code

Verification of Structural Integrity for Cylindrical Subsonic Vehicle

원통형 아음속 비행체 구조 건전성 확인

  • Received : 2015.03.11
  • Accepted : 2015.08.18
  • Published : 2015.09.01

Abstract

In this paper, the structural integrity for a cylindrical vehicle in subsonic environments is verified. In order to confirm static structural safety for the cylindrical vehicle in extreme maneuver condition, the structure analysis and full-scale static structure test are carried out. The commercial finite element codes, MSC. Patran/Nastran is used for numerical simulation. The full-scale static structure test equipment consists of the counterbalance system, loading system and data acquisition system. Besides, the dynamic characteristics for the cylindrical vehicle are reviewed by performing an impact hammer test.

본 논문에서는 아음속 환경에서 원통형 비행체의 구조 건전성을 확인하였다. 극한 기동 조건에서 원통형 비행체의 정적 구조 안전성을 확인하기 위하여 구조 해석과 전기체 정적 구조 시험을 수행하였다. 수치 해석을 위하여 상용 유한 요소 프로그램 MSC. Patran/Nastran을 이용하였으며, 전기체 정적 구조 시험에는 중량 보상 장치, 하중 부가 장치, 데이터 획득 장치를 적용하였다. 이와 함께, 동특성 시험으로서 햄머 충격시험을 수행하여 원통형 비행체의 동적 특성을 확인하였다.

Keywords

References

  1. "Aircraft Structural Integrity Program Airplane Requirements," MIL-HDBK-1530, 2002.
  2. "Missiles, Guided, Design and Construction, General Specification for," MIL-M-8555C, 1984.
  3. "Missiles, Guided, Structural Integrity, General Specification for," MIL-M-8856B, 1990.
  4. Lee, H. D., Kwon, O. J., Lee, B. S., and Noh, K. H., "Aerodynamic Simulation of Air-Launched Missiles from a Complete Helicopter," Journal of The Korea Society for Aeronautical and Space Sciences, Vol. 39, No. 12, Dec. 2011, pp.1097-1106. https://doi.org/10.5139/JKSAS.2011.39.12.1097
  5. Buschek, H., "Design and flight test of a robust autopilot for the IRIS-T air-to-air missile," Control Engineering Practice, Vol. 11, No. 5, May. 2003, pp. 551-558. https://doi.org/10.1016/S0967-0661(02)00063-1
  6. Huttsell, L., Schuster, D., Volk, J., Giesing, J., and Love, M., "Evaluation of Computational Aeroelasticity Codes for Loads and Flutter," AIAA 2001-0569
  7. Raveh, D. E., Levy, Y., and Karpel, M., "Structural Optimization Using Computational Aerodynamics," AIAA Journal Vol. 38, No. 10 Oct. 2000, pp.1974-1982. https://doi.org/10.2514/2.853
  8. Striz, A. G. and Venkayya, V. B., "Influence of Structural and Aerodynamic Modeling on Flutter Analysis", Journal of Aircraft, Vol. 31, No. 5, Sep. 1994, pp. 1205-1211 https://doi.org/10.2514/3.46631
  9. Lee, K. Y., Kim, J. K., Lee, K. B., and Jung, J. K., "The Study on Structural Strength Test Technique for Cylindrical Supersonic Vehicle Subjected to Severe Heating Environment," Journal of The Korea Society for Aeronautical and Space Sciences, Vol. 33, No. 6, Jun. 2005, pp.83-91. https://doi.org/10.5139/JKSAS.2005.33.6.083
  10. Jung, J. K., Lee, K. B., Yang, M. S., and Shul, C. W., "A Study on the Test Load Simulation Technique for T-50 Full Scale Durability Test," Journal of The Korea Society for Aeronautical and Space Sciences, Vol. 32, No. 3, Apr. 2004, pp.82-87. https://doi.org/10.5139/JKSAS.2004.32.3.082
  11. "Airplane Strength and Rigidity Ground Tests," MIL-A-8867C, 1994.
  12. James, G. H., Carne, T. G., and Edmunds, R. S., "STARS Missile - Modal Analysis of First-Flight Data Using the Natural Excitation Technique, NEXT," In Proceedings of the 12th International Modal Analysis Conference, Honolulu, Hawaii, 31 Jau.-3 Feb. 1994.
  13. James, G., Came, T., Mayes, R., and Bateman, V., "Extending Modal Testing to the Launch Environment", In proceeing of the Spacecraft Dynamic Environment Technical Interchange Meeting, California, USA, 23-24 Jun. 1992.
  14. MSC Software, Patran/Nastran 2012 documentation
  15. Ansys, Ansys Fluent Tutorial Guide, Release 15.0, Nov. 2013.