DOI QR코드

DOI QR Code

Fabrication and properties of in-situ Al/AlB2 composite reinforced with high aspect ratio borides

  • Kayikci, Ramazan (Sakarya University, Faculty of Technology) ;
  • Savas, Omer (Yildiz Technical University, Naval Architect and Marine Engineering Faculty)
  • 투고 : 2014.10.01
  • 심사 : 2015.02.13
  • 발행 : 2015.09.25

초록

Production and properties of metal matrix composites reinforced with an in-situ high aspect ratio $AlB_2$ flake have been investigated. Boron 2.2wt.% was dissolved in pure Al and Al-Cu alloy at $1300^{\circ}C$ by adding directly boron oxide which resulted in 4 vol.% reinforcing phase. The in-situ $AlB_2$ flake concentration was increased up to 30 vol.% in order to increase the tensile strength of the composites. Hardness, compressive strength and tensile strength of the composite were measured and compared with their matrix. Results showed that 30 vol.% $AlB_2/Al$ composite show a 193% increase in the compressive strength and a 322% increase in compressive yield strength. Results also showed that ductility of composites decreases with adding $AlB_2$ reinforcements.

키워드

과제정보

연구 과제 주관 기관 : Technological Research Council of Turkey (TUBITAK)

참고문헌

  1. Adelakin, T.K. and Suarez, O.M. (2011), "Study of boride - reinforced aluminium matrix composites produced via centrifugal casting", Mater. Manuf. Process., 26(2), 338-345. https://doi.org/10.1080/10426910903124829
  2. Calderon, H.E. and Suarez, O.M. (2008), "Thermomechanical effects on aluminum matrix composites reinforced with AlB2 particles", J. Compos. Mater., 42(25), 2651-2672. https://doi.org/10.1177/0021998308096328
  3. Carlson, O.N. (1990), Bull, Alloy Phase Diagrams 11-6, pp. 560-566.
  4. Daniel, B.S.S., Murthy, V.S.R. and Murty, G.S. (1997), "Metal-ceramic composites via in-situ methods", J. Mater. Process. Technol., 68(2), 132-155. https://doi.org/10.1016/S0924-0136(96)00020-9
  5. Deppisch, C., Liu, G., Shang, J.K. and Economy, J. (1997), "Processing and mechanical properties of AlB2 flake reinforced Al-alloy composites", Mater. Sci. Eng., 225(1-2), 153-161. https://doi.org/10.1016/S0921-5093(96)10575-X
  6. Deppisch, C., Liu, G., Hall, A., Xu, Y., Zangvil, A., Shang, J.K. and Economy, J. (1998), "The crystallization and growth of AlB2 single crystal flakes in aluminum", J. Mater. Res., 13(12), 3485-3497. https://doi.org/10.1557/JMR.1998.0476
  7. Ficici, F., Koksal, S., Kayikci, R. and Savas, O. (2011), "Investigation of unlubricated sliding wear behaviours of in-situ AlB2/Al metal matrix composite", Adv. Compos. Lett., 20(4), 109.
  8. Hall, A.C. (1999), "Pathweys to a family of low cast, high performance, metal matrix composites based on $AlB_2$ in aluminum", The University of Tulsa, Tulsa, OK, USA.
  9. Hall, C. and Economy, J. (2000a), "Preparing high- and low-aspect ratio AlB2 flakes from borax or boron oxide", JOM, 52(2), 42-44. https://doi.org/10.1007/s11837-000-0187-9
  10. Hall, A.C. and Economy, J. (2000b), "The AlL+AlB12--->AlB2 peritectic transformation and its role in the formation of high aspect ratio AlB2 flakes", J. Phase Equil., 21(1), 63-69. https://doi.org/10.1361/105497100770340435
  11. Karantzalis, A.E., Lekatou, A., Georgatis, M., Poulas, V. and Mavros, H. (2011), "Casting-based production of Al-TiC-AlB2 composite material through the use of KBF4 salt", JMEPEG, 20(2), 98-202.
  12. Kayikci, R., Kurtulus, O. and Gurbuz, R. (2007), "The formation and growth behavior of aluminium boride crystals in an Al-B alloy", Solid State Phenom., 144, 140-144. DOI: 10.4028/www.scientific.net/SSP.144.140
  13. Koksal, S., Ficici, F., Kayikci, R. and O mer, S. (2013), "Experimental optimization in turning of in-situ AlB2 reinforced AlMg3 matrix composites produced by centrifugal casting method", J. Compos. Mater., 48(15), 1801-1812. https://doi.org/10.1177/0021998313490584
  14. Miracle, D.B. (2005), "Metal matrix composites - From science to technological significance", Compos. Sci. Technol., 65(15-16), 2526-2540. https://doi.org/10.1016/j.compscitech.2005.05.027
  15. Nafisi, S. and Ghomashchi, R. (2007), "Boron-based refiners: implications in on ventional casting of Al-Si alloys", Mater. Sci. Eng., 452-453, 445-453. https://doi.org/10.1016/j.msea.2006.10.145
  16. Rohatgi, P. (2001), "Cast metal matrix compozites: Past, present and future", American Foundry Society; Silver Anniversary Paper, Div. 2. AFS Transactions, 01-133, 1-25.
  17. Savas, O . and Kayikci, R. (2013a), "A Taguchi optimisation for production of Al-B master alloys using boron oxide", J. Alloy. Compound., 580, 232-238. https://doi.org/10.1016/j.jallcom.2013.05.112
  18. Savas, O . and Kayikci, R. (2013b), "Production and wear properties of metal matrix composites reinforced with boride particles", Mater. Des., 51, 641-647. https://doi.org/10.1016/j.matdes.2013.04.049
  19. Savas, O., Kayikci, R. and Koksal, S. (2012), "Application of Taguchi method to investigate the effect of some factors on in-situ formed flake structures of Al/AlB2 composite", Adv. Compos. Lett., 21, 44-50.
  20. Tjong, S.C. and Mal, Z.Y. (2000), "Microstructural and mechanical characteristics of İn-situ metal matrix composites", Mater. Sci. Eng., 29(3-4), 49-113. https://doi.org/10.1016/S0927-796X(00)00024-3
  21. Wang, X. (2005), "The formation of AlB2 in an Al-B master alloy", J. Alloy. Compound., 403, 283. https://doi.org/10.1016/j.jallcom.2005.04.204