DOI QR코드

DOI QR Code

유기금속화학증착 분진(MOCVD dust)을 이용한 갈륨 함유 고순도 수용액 제조 연구

Fabrication of High Purity Ga-containing Solution using MOCVD dust

  • 이덕희 (고등기술연구원 신소재공정센터) ;
  • 윤진호 (고등기술연구원 신소재공정센터) ;
  • 박경수 (고등기술연구원 신소재공정센터) ;
  • 홍명환 (고등기술연구원 신소재공정센터) ;
  • 이찬기 (고등기술연구원 신소재공정센터) ;
  • 박정진 ((주)엔코)
  • Lee, Duk-Hee (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Yoon, Jin-Ho (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Park, Kyung-Soo (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Hong, Myung-Hwan (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Lee, Chan-Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Park, Jeung-Jin (Enco co. Ltd.)
  • 투고 : 2015.06.25
  • 심사 : 2015.07.24
  • 발행 : 2015.08.31

초록

본 연구에서는 LED 칩 제조를 위해 이용되는 유기금속화학증착(MOCVD) 장비에서 발생하는 분진(dust)으로부터 용매추출을 통해 고순도 갈륨(Ga) 함유 수용액을 회수하는 연구를 수행하였다. 추출제 종류, 추출제의 농도 변화에 대한 연구를 통해 Ga 추출에 효과적인 추출제를 선정하고자 하였으며 다단계 추출/역추출 공정을 통해 추출 효율을 향상시켜 고순도 Ga 수용액을 제조하였다. 선행연구에서 원료에 대한 분석을 바탕으로 Ga의 추출 및 분리를 위해 PC88A, DP-8R, Cyanex 272 추출제 중 Cyanex 272를 선택하였으며 1.5M일 때 43.8%의 효율이 나타났다. 다단계 추출을 통해 Ga의 추출 효율은 83%까지 상승하였으며 0.1 M HCl을 이용한 역추출 공정으로 불순물이 없는 5N급 고순도 Ga 수용액을 제조할 수 있었다.

In this study, we have investigated solvent extraction of Ga and recovery of high pure Ga solution from MOCVD dust for manufacturing of LED chip. Effect of extractan, concentration of extractant were examined for choosing the more effective extractant and high pure Ga solution was fabricated by multi-stage extraction/stripping process. For extraction/separation of Ga based on the analysis of raw-material in previous study, 3 different extractants PC 99A, DP-8R, Cyanex 272 has been investigated and the extraction efficiency of 1.5 M Cyanex 272 was 43.8%. It was conformed that extraction efficiency of Ga was 83% in multi-stage extraction and 5N high purity Ga stripping solution without impurities also obtained.

키워드

참고문헌

  1. Moskalyk, R. R., 2003 : "Gallium: the backbone of the electronics industry", Miner. eng. Vol. 16, pp. 921-929. https://doi.org/10.1016/j.mineng.2003.08.003
  2. Kim, D. and Son, R., 2013 : "LED MOCVD용 Precursor 시장 및 산업 분석", IHS Electronics & Media.
  3. Kinoshita, T., Ishigaki, Y., Shibata, N., Yamaguchi, K., Akita, S., Kitagawa, S., Kondou, H., Nii, S., 2011 : "Selective recovery of gallium with continuous countercurrent foam separation and its application to leaching solution of zinc refinery residues", Sep. Purif. Technol. Vol. 78, pp. 181-188. https://doi.org/10.1016/j.seppur.2011.01.044
  4. Choi, Y. Y., Nam, C. W., Yu, Y. T., Kim, W. Y., 2005 : "Recovery of Gallium from GaAs Scraps by Thermal Decomposition", J. of Korean Inst. of Resources recycling, Vol. 14, pp. 28-32.
  5. Salazar, K., McNutt, M. K., 2013 : "Mineral Commodity Summaries 2013", U.S. Geological survey, pp. 58.
  6. Xu, K., Deng, T., Liu, J., Peng, W., 2007 : "Study on the recovery of gallium from phosphorus flue dust by leaching with spent sulfuric acid solution and precipitation", Hydrometallurgy, Vol. 86, pp. 172-177. https://doi.org/10.1016/j.hydromet.2006.11.013
  7. Ahmed, I. M., El-Nadi, Y. A., El-Hefny, N. E., 2013 : "Extraction of gallium(III) from hydrochloric acid by cyanex 923 and cyanex 925", Hydrometallurgy, Vol. 131-132, pp. 24-28. https://doi.org/10.1016/j.hydromet.2012.09.010
  8. Herdzik, I., Dembinski, W., Narbutt, J., Siekierski, S., 2012 : "Separation of Gallium and Indium Isotopes by Cation and Anion Exchange Chromatography", Solv. Extr. ion exch, Vol. 30, pp. 593-603. https://doi.org/10.1080/07366299.2012.671115
  9. Yang, J. Y., O, B. S., Yoon, J. S., 2014 : "Development of Reuse Process Through Recovery and Refinement of Precursor for LED", J. of Korean Inst. of Resources recycling, Vol. 23, pp. 25-32. https://doi.org/10.7844/kirr.2014.23.1.25
  10. Park, K. S., Swain, B., Kang, L. S., Lee, C. G., Hong, H. S., Shim, J. G., Park, J. J., 2014 : "Leaching behavior of Ga and In from MOCVD dust", J. Kor. Powd. Met. Inst, Vol. 21, pp. 202-206. https://doi.org/10.4150/KPMI.2014.21.3.202