Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Adhikari, S. and Wagner, N. (2004), "Direct time-domain integration method for exponentially damped linear systems", Comput. Struct., 82, 2453-2461. https://doi.org/10.1016/j.compstruc.2004.08.004
- Ai, Z.Y. and Feng, D.L. (2014), "Analytical layer element solutions for deformations of transversely isotropic multilayered elastic media under nonaxisymmetric loading", Int. J. Numer. Anal. Meth. Geomech, 38(15), 1585-1599. https://doi.org/10.1002/nag.2272
- Ai, Z.Y. and Cang, N.R. (2012), "Analytical layer-element solutions for a multi-layered transversely isotropic elastic medium subjected to axisymmetric loading", J. Zhejiang Univ. Sci. A, 13(1), 9-17. https://doi.org/10.1631/jzus.A1100163
- Ai, Z.Y. and Li, Z.X. (2014), "Analytical layer-element solution to axisymmetric dynamic response of transversely isotropic multilayered half-space", Soil Dyn. Earthq. Eng., 66, 69-77. https://doi.org/10.1016/j.soildyn.2014.06.023
- Ai, Z.Y. and Zhang, Y.F. (2015), "Plane strain dynamic response of a transversely isotropic multilayered half-plane", Soil Dyn. Earthq. Eng., 75, 211-219. https://doi.org/10.1016/j.soildyn.2015.04.010
- Ai, Z.Y. and Cheng, YC. (2011), "Analytical layer-element solution to axisymmetric consolidation of multilayered soils", Comput. Geotech., 38(2), 227-232. https://doi.org/10.1016/j.compgeo.2010.11.011
- Bazyar, M.H. and Song, C. (2008), "A continued-fraction-based high-order transmitting boundary for wave propagation in unbounded domains of arbitrary geometry", Int. J. Numer. Meth. Eng., 74(2), 209-237. https://doi.org/10.1002/nme.2147
- Beskos, D.E. (1987), "Boundary element methods in dynamic analysis", Appl. Mech. Rev., 40(1), 1-23. https://doi.org/10.1115/1.3149529
- Birk, C. and Song, C. (2009), "A continued-fraction approach for transient diffusion in unbounded medium", Comput. Meth. Appl. Mech. Eng., 198, 2576-2590. https://doi.org/10.1016/j.cma.2009.03.002
- Birk, C., Prempramote, S. and Song, C. (2010), "High-order doubly asymptotic absorbing boundaries for the acoustic wave equation", Proceedings of 20th International Congress on Acoustics, Sydney, Australia.
- Birk, C. and Song, C. (2010), "A local high-order doubly asymptotic open boundary for diffusion in a semiinfinite layer", J. Comput. Physica, 229, 6156-6179. https://doi.org/10.1016/j.jcp.2010.04.046
- Birk, C., Prempramorte, S. and Song, C. (2012), "An improved continued-fraction-based high-order transmitting boundary for time-domain analyses in unbounded domains", Int. J. Meth. Eng., 89(3), 269-298. https://doi.org/10.1002/nme.3238
- Birk, C. and Behnke, R. (2012), "A modified scaled boundary finite element method for three-dimensional dynamic soil-structure interaction in layered soil", Int. J. Meth. Eng., 89, 371-402. https://doi.org/10.1002/nme.3251
- Bycroft, G.N. (1956), "Forced vibrations of a rigid circular plate on a semi-infinte elastic space and on an elastic stratum", Phil Tran. R. Soc., London, Ser. A, 248, 327-368. https://doi.org/10.1098/rsta.1956.0001
- Chen, D. and Birk, C. (2014), "A high-order approach for modeling transient wave propagation problems using the scaled boundary finite element method", Int. J. Numer. Meth. Eng., 97(13), 937-959. https://doi.org/10.1002/nme.4613
- Chen, D. and Du, C.B. (2014), "A computational model for structure-foundation dynamic interaction in time domain", Chin. J. Rock Soil Med., 4(35), 1164-1172.
- Chen, D. and Dai, S.Q. (2014), "A high-order time-domain model of dam-foundation dynamic interaction", Chin. J. Hyd. Eng. ShuiLiXuebao, 45(5), 60-70.
- Deeks, A.J. and Randolph, M.F. (1994), "Axisymmetric time-domain transmitting boundaries", J. Eng. Mech., ASCE, 120(1), 25-42. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:1(25)
- Fan, S.C., Li, S.M. and Yu, G.Y. (2005), "Dynamic fluid-structure interaction analysis using boundary finite element method-finite element method", J. Appl. Mech., ASME, 72, 591-598. https://doi.org/10.1115/1.1940664
- Genes, M. (2012), "Dynamic analysis of large-scale SSI systems for layered unbounded media via a parallelized coupled finite element/boundary-element/scaled boundary finite-element model", Eng. Anal. Bound. Elem., 36, 845-857. https://doi.org/10.1016/j.enganabound.2011.11.013
- Hall, W.S. and Oliveto, G. (2003), Boundary Element Methods for Soil-Structure Interaction, Kluwer Academic Publishers, Dordrecht.
- Kausel, E. and Roesset, J.M. (1975), "Dynamic stiffness of circular foundations", J. Eng. Mech. Div., 101, 771-785.
- Kausel, E. and Peek, R. (1982), "Dynamic loads in the interior of a layered stratum: an explicit solution", Bul. Seismol. Soc. Am., 72, 1459-1481.
- Kausel, E. (1986) "Wave propagation in anisotropic layered media", Int. J. Numer. Meth. Eng., 23, 1567-1578. https://doi.org/10.1002/nme.1620230811
- Kausel, E. (1994), "Thin-layer method: formulation in the time domain", Int. J. Numer Meth. Eng., 37, 927-941. https://doi.org/10.1002/nme.1620370604
- Komatitsch, D. and Tromp, J. (2002), "Spectral-element simulations of global seismic wave propagation-I. Validation", Geophy. J. Int., 149(2), 390-412. https://doi.org/10.1046/j.1365-246X.2002.01653.x
- Laub, A.J. (1979), "A Schur method for solving algebraic Riccati equations", IEEE Tran. Auto. Control, AC-24, 913-921.
- Lehmann, L. and Ruberg, T. (2006), "Application of hierarchical matrices to the simulation of wave propagation in fluids", Commun. Numer Meth. Eng., 22, 489-503.
- Lin, G., Liu, J., Li, J.B. and Fang, H.Y. (2011), "Scaled boundary finite element approach for waveguide eigenvalue problem", IETMicrow. Anten. Propag., 12(5), 1508-1515.
- Liu, J.B., Gu, Y. and Du, Y.X. (2006), "Consistent viscous-spring artificial boundaries and viscous-spring boundary elements", Chin. J. Geotech. Eng., 28(9), 1070-1075.
- Liu, J.B., Du, Y.X. and Du, X.L. (2006), "3D viscous-spring artificial boundary in time domain", Earthq. Eng. Eng. Vib., 5, 93-102. https://doi.org/10.1007/s11803-006-0585-2
- Murakami, A., Fukui, M. and Hasegawa, T. (1996), "Deformation analysis and bearing capacity of twolayered soil deposit with a surface crust considering couple stresses", Soil. Found., 36(3), 133-139. https://doi.org/10.3208/sandf.36.3_133
- Richart, F.E. and Whitman, R.V. (1967), "Comparison of footing vibration tests with theory", J SM, ASCE, 93(6), 65-91.
- Radmanovic, B. and Kata, C. (2010), "A high performance scaled boundary finite element method", IOP Conference Series: Material Science and Engineering, 10, 1-10.
- Schauer, M. (2012), "Parallel computation of 3-D soil-structure interaction in time domain with a coupled FEM/SBFEM approach", J. Sci. Comput., 52, 446-467. https://doi.org/10.1007/s10915-011-9551-x
- Seale, S.H. and Kausel, E. (1989), "Point loads in cross-anisotropic layered halfspaces", J. Eng. Mech., 115, 509-542. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:3(509)
- Song, C. and Wolf, J.P. (1995), "Consistent infinitesimal finite-element-cell method: out-plane motion", J. Eng. Mech., 121,613-619. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:5(613)
- Song, C. and Wolf, J.P. (1996), "Consistent infinitesimal finite-element-cell method: three-dimensional vector wave equation", Int. J. Numer. Meth. Eng., 39, 2189-2208. https://doi.org/10.1002/(SICI)1097-0207(19960715)39:13<2189::AID-NME950>3.0.CO;2-P
- Song, C. and Wolf, J.P. (1997), "The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics", Comput. Meth. Appl. Mech. Eng., 147, 329-355. https://doi.org/10.1016/S0045-7825(97)00021-2
- Song, C. and Wolf, J.P. (2000), "The scaled boundary finite-element-a primer: solution procedures", Comput. Struct., 78, 211-225. https://doi.org/10.1016/S0045-7949(00)00100-0
- Song, C. (2004), "A matrix function solution for the scaled boundary finite-element equation in statics", Comput. Meth. Appl. Mech. Eng., 193, 2325-2356. https://doi.org/10.1016/j.cma.2004.01.017
- Song, C. and Bazyar, M.H. (2007), "A boundary condition in the Pade series for frequency domains solution of wave propagation in unbounded domains", Int. J. Numer Meth. Eng., 69, 2330-2358. https://doi.org/10.1002/nme.1852
- Song, C. (2011), "The scaled boundary finite element method in structural dynamics", Int. J. Numer. Meth. Eng., 31, 1724-1732.
- Sung, T.Y. (1953), "Vibration in semi-infinite solides dur to periodic surface loading", ASTM-STP, No. 156, Symposium on Dynamic Testing of Soil, 35-64.
- Trinks, C. (2004), "Consistent absorbing boundaries for time-domain interaction analyses using the fractional calculus", PhD Thesis, Technische Universitat Dresden, Fakultat Bauingenieurwesen.
- Wolf, J.P. and Song, C. (1995), "Consistent infinitesimal finite-element-cell method: in-plane motion", Comput. Meth. Appl. Mech. Eng., 123, 355-370. https://doi.org/10.1016/0045-7825(95)00781-U
- Wolf, J.P. and Song, C. (1997), "Finite-element modelling of unbounded media", Earthq. Eng. Struct. Dyn., 26(6), 667-668. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<667::AID-EQE667>3.0.CO;2-L
- Wolf, J.P. (2003), The Scaled Boundary Finite Element Method, Wiley & Sons, Chichester.
- Yan, J., Zhang, C. and Jin, F. (2004), "A coupling procedure of FE and SBFE for soil- structure interaction in the time domain", Int. J. Numer Meth. Eng., 59, 1453-1471. https://doi.org/10.1002/nme.923
- Zhang, X., Wegner, J.L. and Haddow, J.B. (1999), "Three-dimensional dynamic soil-structure interaction analysis in the time-domain", Earthq. Eng. Struct. Dyn., 28, 1501-1524. https://doi.org/10.1002/(SICI)1096-9845(199912)28:12<1501::AID-EQE878>3.0.CO;2-8
- Zhao, C.B. (2009), Dynamic and transient infinite elements; Theory and geophysical, geotechnical and geonvironmental applications, Springer, Berlin.
Cited by
- High order solutions for the magneto-electro-elastic plate with non-uniform materials vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.07.033
- An enhanced octree polyhedral scaled boundary finite element method and its applications in structure analysis vol.84, 2017, https://doi.org/10.1016/j.enganabound.2017.07.007
- Iterative coupling of precise integration FEM and TD-BEM for elastodynamic analysis vol.67, pp.4, 2015, https://doi.org/10.12989/sem.2018.67.4.317