• Title/Summary/Keyword: continued fraction approach

Search Result 6, Processing Time 0.019 seconds

Time-domain analyses of the layered soil by the modified scaled boundary finite element method

  • Lu, Shan;Liu, Jun;Lin, Gao;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1055-1086
    • /
    • 2015
  • The dynamic response of two-dimensional unbounded domain on the rigid bedrock in the time domain is numerically obtained. It is realized by the modified scaled boundary finite element method (SBFEM) in which the original scaling center is replaced by a scaling line. The formulation bases on expanding dynamic stiffness by using the continued fraction approach. The solution converges rapidly over the whole time range along with the order of the continued fraction increases. In addition, the method is suitable for large scale systems. The numerical method is employed which is a combination of the time domain SBFEM for far field and the finite element method used for near field. By using the continued fraction solution and introducing auxiliary variables, the equation of motion of unbounded domain is built. Applying the spectral shifting technique, the virtual modes of motion equation are eliminated. Standard procedure in structural dynamic is directly applicable for time domain problem. Since the coefficient matrixes of equation are banded and symmetric, the equation can be solved efficiently by using the direct time domain integration method. Numerical examples demonstrate the increased robustness, accuracy and superiority of the proposed method. The suitability of proposed method for time domain simulations of complex systems is also demonstrated.

New Approach Using the Continued Fraction Expansion for the Dead Time Approximation (Continued Fraction Expansion을 이용한 Dead Time 근사의 새로운 접근)

  • Cho, Won-Hui;Lee, Jie-Tae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.830-836
    • /
    • 2012
  • Dead times appear often in describing process dynamics and raise some difficulties in simulating process dynamics or analyzing process control systems. To relieve these difficulties, it is needed to approximate the infinite dimensional dead time by the finite dimensional transfer function and, for this, the Pade approximation method is often used. For the accurate approximation of the dead time, high order Pade approximation is needed and the high order Pade approximation is not easy to memorize and is not stable numerically. We propose a method based on the continued fraction expansion that provides the same transfer functions. The method is excellent numerically as well as systematic to be memorized easily. It can be used conveniently for the process control lecture and computations.

Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM

  • Tian, Xinran;Du, Chengbin;Dai, Shangqiu;Chen, Denghong
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.649-663
    • /
    • 2018
  • The scaled boundary finite element method is extended to evaluate the dynamic stress intensity factors and T-stress with a numerical procedure based on the improved continued-fraction. The improved continued-fraction approach for the dynamic stiffness matrix is introduced to represent the inertial effect at high frequencies, which leads to numerically better conditioned matrices. After separating the singular stress term from other high order terms, the internal displacements can be obtained by numerical integration and no mesh refinement is needed around the crack tip. The condition numbers of coefficient matrix of the improved method are much smaller than that of the original method, which shows that the improved algorithm can obtain well-conditioned coefficient matrices, and the efficiency of the solution process and its stability can be significantly improved. Several numerical examples are presented to demonstrate the increased robustness and efficiency of the proposed method in both homogeneous and bimaterial crack problems.

Experimental Comparison for Constant e using Spreadsheet (Spreadsheet를 활용한 상수 e의 실험적 비교)

  • 김철수;양영근
    • The Mathematical Education
    • /
    • v.40 no.1
    • /
    • pp.113-123
    • /
    • 2001
  • We investigated an irrational constant e and compared its computational methods using spreadsheet. Such methods are based on classical definition, infinite series, continued fraction, infinite product exponential function and accelerated classical method. This kind of work is focused on experimental mathematics using computers in math class. This approach will be helpful for mathematics teachers to teach constant e in their classroom.

  • PDF

A Case of Pleural Effusion in a Patient with Heart Failure with Preserved Ejection Fraction Improved by A Combined Korean-Western Medicine Approach (좌심실 수축 기능 보전 심부전증으로 인한 흉수에 대한 한양방 복합치료 치험 1례)

  • Ha, Won Jung;Seo, Yuna;Lee, Young seon;Cho, Ki-Ho;Mun, Sang-Kwan;Jung, Woo-Sang;Kwon, Seungwon
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • ■ Background Heart Failure with Preserved Ejection Fraction(HFpEF) is a heart failure that appears to have normal contraction function. In the case of HFpEF, no pharmacological therapy has been found to improve clinical prognosis, so it should be approached as an symptomatic treatment, therefore alternatives are needed due to concerns over adverse effects such as electrolyte imbalance caused by medication. ■ Case report A 81 year old female patient with Heart Failure with Preserved Ejection Fraction(HFpEF) patient complained dyspnea. Herbal prescription Mokbanggi-tang and Oryeongsan was administered on 6th day and 8th day respectively since the symptoms started. The NYHA Classification and Chest X-ray had been evaluated during the treatment period. Until the 7th day, the patient was classified as Class II, and when discharged from the hospital on the 28th day, it gradually improved and was classified as Class II. Chest X-Ray took on 2nd day showed pleural effusion and it was aggravated until 13th day. Follow up Chest X-Ray showed improving state of pleural effusion from 20th day and gradually got better. Mokbanggi-tang treatment continued for 52 days and stopped on 58th day. After Mokbanggi-tang treatment ended, only Oryeongsan treatment was maintained. ■ Conclusion The present case report suggests that Korean-Western medicine approach with Mokbangki-tang and Oryeongsan might be effective to pleural effusion and heart failure symptoms such as poor physical activity shown in a NYHA Classification. This shows that Mokbanggi-tang and Oryeongsan can be a therapeutic option as a treatment for patient with Heart Failure with Preserved Ejection Fraction(HFpEF).

Study on Evaluation of Effective Thermal Conductivity of Unsaturated Soil Using Average Capillary Pressure and Network Model (평균 모세관압과 네트워크 모델을 이용한 불포화토의 유효 열전도도 산정에 관한 연구)

  • Han, Eunseon;Lee, Chulho;Choi, Hyun-Jun;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.93-107
    • /
    • 2013
  • Thermal conduction of the particulate composites or granular materials can be widely used in porous materials and geotechnical engineering. And it has continued to develop "effective thermal conductivity" of medium by modeling energy relationship among particles in medium. This study focuses on the development of the effective thermal conductivity at the unsaturated conditions of soils using the modified network model approach assisted by synthetic 3D random packed systems (DEM method, Discrete Element Method) at the particle scale. To verify the network model, three kinds of glass beads and the Jumunjin sand are used to obtain experimental values at various unsaturated conditions. The PPE (Pressure Plate Extractor) test is then performed to obtain SWCC (Soil-Water Characteristic Curve) of soil samples. In the modified network model, SWCC is used to adjust the equivalent radius of thermal cylinder at contact area between particles. And cutoff range parameter to define the effective zone is also adjusted according to the SWCC at given conditions. From a series of laboratory tests and the proposed network model, the modified network model which adopts a SWCC shows a good agreement in modeling thermal conductivity of granular soils at given conditions. And an empirical correlation between the fraction of the mean radius (${\chi}$) and thermal conductivity at given saturated condition is provided, which can be used to expect thermal conductivity of the granular soils, to estimate thermal conductivity of granular soils.