DOI QR코드

DOI QR Code

Moisture-dependent Physical Properties of Detarium microcarpum Seeds

  • Aviara, Ndubisi A. (Department of Agricultural and Environmental Resources Engineering, University of Maiduguri) ;
  • Onaji, Mary E. (Department of Agricultural and Environmental Resources Engineering, University of Maiduguri) ;
  • Lawal, Abubakar A. (Department of Agricultural and Environmental Resources Engineering, University of Maiduguri)
  • Received : 2015.06.26
  • Accepted : 2015.08.11
  • Published : 2015.09.01

Abstract

Purpose: Physical properties of Detarium microcarpum seeds were investigated as a function of moisture content to explore the possibility of developing bulk handling and processing equipment. Methods: Seed size, surface area, and 1,000-seed weight were determined by measuring the three principal axes, measuring area on a graph paper, and counting and weighing seeds. Particle and bulk densities were determined using liquid displacement and weight in a measuring cylinder, respectively. Porosity was computed from particle and bulk densities. Roundness and sphericity were measured using shadowgraphs. Angle of repose and static and kinetic coefficients of friction were determined using the vertical cylindrical pipe method, an inclined plane, and a kinetic coefficient of friction apparatus. Results: In the moisture range of 8.2%-28.5% (db), the major, intermediate, and the minor axes increased from 2.95 to 3.21 cm, 1.85 to 2.61 cm, and 0.40 to 1.21 cm, respectively. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose increased from 354.62 to $433.19cm^2$, 3.184 to 3.737 kg, 1060 to $1316kg/m^3$, and 30.0% to 53.1%, respectively, whereas bulk density decreased from 647.6 to $617.2kg/m^3$. Angle of repose increased from $13.9^{\circ}$ to $28.4^{\circ}$. Static and kinetic coefficients of friction varied between 0.096 and 0.638 on different structural surfaces. Conclusions: Arithmetic mean, geometric mean, and equivalent sphere effective diameters determined at the same moisture level were significantly different from each other, with the arithmetic mean diameter being greatest. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose all increased linearly with moisture content. Bulk density decreased linearly with moisture content. The coefficients of friction had linear relationships with moisture content. The highest values of static and kinetic coefficients of friction were observed on galvanized steel and hessian fabric, respectively, whereas the lowest values were observed on fiberglass.

Keywords

References

  1. Abdalbasit, A. M., E. S. Mohamed, A. B. A. Mirghani and I. A. Siddig. 2009. Detarium microcarpum Guill. and Perr. Fruit: Proximate, chemical analysis and sensory characteristics of concentrated juice and jam. African Journal of Biotechnology, 8(17):4217-4221.
  2. Amin, M. N., M. A. Hossaini and K. C. Roy. 2004. Effects of moisture content on some physical properties of lentil seeds. Journal of Food Engineering, 65(1):83-87. https://doi.org/10.1016/j.jfoodeng.2003.12.006
  3. AOAC 1980. Official Methods of Analysis, 13th ed. Association of Official Analytical Chemists, Washington, DC. USA.
  4. Aviara, N. A., M. I. Gwandzang and M. A. Haque. 1999. Physical properties of guna seeds. Journal of Agricultural Engineering Research, 73:105-111. https://doi.org/10.1006/jaer.1998.0374
  5. Aviara, N. A., P. P. Power and T. Abbas. 2013. Moisture dependent physical properties of Moringa oleifera seed relevant in bulk handling and mechanical processing. Industrial Crops and Products, 42:96-104. https://doi.org/10.1016/j.indcrop.2012.05.001
  6. Aviara, N. A., E. B. Ibrahim and L. N. Onuoha. 2014a. Physical properties of Brachystegia eurycoma seeds as affected by moisture content. International Journal of Agricultural and Biological Engineering, 7(1):84-93.
  7. Aviara, N. A., A. A. Lawal, H. M. Mshelia and D. Musa. 2014b. Effect of moisture content on some engineering properties of mahogany (Khaya senegalensis) seed and kernel. Research in Agricultural Engineering, 60: 30-36.
  8. Aviara, N. A., E. Mamman and B. Umar. 2005a. Some physical properties of Balanites aegyptiaca nut. Biosystems Engineering, 92(3):325-334. https://doi.org/10.1016/j.biosystemseng.2005.07.011
  9. Aviara, N. A., F. A. Oluwole and M. A. Haque. 2005b. Effect of moisture content on some physical properties of sheanut. International Agrophysics, 19:193-198.
  10. Aviara, N. A., O. A. Onuh and S. E. Ehiabhi. 2010. Physical properties of Mucuna flagellipes nuts. GSB Seed Science and Biotechnology, 4(1):59-68.
  11. Aydin, C., H. Ogut and M. Konak. 2002. Physical properties of Turkish Mahaleb. Biosystems Engineering, 60:315-320.
  12. Bamgboye, A. I. and I. O. Adejumo. 2009. Physical properties of roselle (Hibiscus sabdariffa L.) seed. Agricultural Engineering International: The CIGR e-journal XI, manuscript 1154, www.cigrjournal.org.
  13. Baryeh, E. A. and B. K. Mangope. 2002. Some physical properties of QP-38 variety of pea pea. Journal of Food Engineering, 56:341-347.
  14. Burubai, W., A. J. Akor, A. H. Igoni and Y. T. Puyate. 2007. Some physical properties of African nutmeg (Monotora mystica). International Agrophysics, 21:123-126.
  15. Carman, K. 1996. Some physical properties of lentil seeds. Journal of Agricultural Engineering Research, 63:87-92. https://doi.org/10.1006/jaer.1996.0010
  16. Chandrasekar, V. and R. Visvanathan. 1999. Physical and thermal properties of coffee. Journal of Agricultural Engineering Research, 73:227-234. https://doi.org/10.1006/jaer.1999.0411
  17. Dutta, S. K., V. K. Nema and R. K. Bhadwaj. 1988. Physical properties of gram. Journal of Agricultural Engineering Research, 39:269-275. https://doi.org/10.1016/0021-8634(88)90148-5
  18. Ebubekir, N., O. Eugin and O. T. Faruk. 2004. Some physical properties of fenugreek (Trigenella foenum-graceum L.) seeds. Journal of Food Engineering, 71:37-43.
  19. Ezeike, G. I. O. 1986. Quasi-static hardness and elastic properties of some tropical seed grains and tomato fruit. International Agrophysics, 2:15-29.
  20. Gebreselassie, T. R. 2012. Moisture dependent physical properties of cardamom (Ellettaria cardamomum M.) seed. Agricultural Engineering International: CIGR Journal, 14(1):108-115.
  21. Gholami, R., A. N. Lorestani and F. Jaliliantabar. 2012. Determination of physical and mechanical properties of zucchini (Summer squash). Agricultual Engineering International: CIGR Journal, 14(1):136-140.
  22. Gupta, R. K. and S. K. Das. 1997. Physical properties of sunflower seeds. Journal of Agricultural Engineering Research, 66: 1-8. https://doi.org/10.1006/jaer.1996.0111
  23. Ihekoronye, A.I. and P.O. Ngoddy, 1985. Integrated food science and technology for the Tropics. 1st Edn., Macmillan publishers, London, UK.
  24. Isik, E. 2007. Some physical and mechanical properties of round red lentil grains. Applied Engineering in Agriculture, 23(4):503-509. https://doi.org/10.13031/2013.23474
  25. Isik, E. and N. Izli. 2007. Physical properties of sunflower seeds (Helianthus anuus L.). International Journal of Agricultural Research, 2:677-686. https://doi.org/10.3923/ijar.2007.677.686
  26. Keay, R. W. J., C. F. A. Onochie and D. P. Standfield. 1964. Nigerian Trees: Vol. 1, Forest Research Institute, Ibadan, Nigeria pp:348.
  27. Kheiralipour, K., M. Karimi, A. Tabatabaeefar, M. Nadari, G. Khouhakht and K. Heidarbeigi. 2008. Moisture dependent physical properties of wheat (Triticum aestivum L.). Journal of Agricultural Technology, 4(1): 53-64.
  28. Kibar, H., T. Ozturk and B. Esen. 2010. The effect of moisture content on physical and mechanical properties of rice (Oryza sativa L.). Spanish Journal of Agricultural Research, 8(3):741-749. https://doi.org/10.5424/sjar/2010083-1273
  29. Kibar, H., T. Ozturk and K. E. Temizel. 2014. Effective engineering properties at design of storage structures of postharvest dry bean grain. Acta Scientiarum-Agronomy, 36(2):147-158. https://doi.org/10.4025/actasciagron.v36i2.19394
  30. Konak, M., K. Carman and C. Aydin. 2002. Physical properties of chick pea seeds. Biosystems Engineering, 82:73-78. https://doi.org/10.1006/bioe.2002.0053
  31. Lawal, A. A., N. A. Aviara and U. A. Kawuyo. 2014. Some physical and frictional properties of sweet detar nut and seed. Continental Journal of Engineering Sciences, 9(1):26-35.
  32. Mieszkalski, I. 1997. The role of physical properties of seeds in the design of dehullers. International Agrophysics, 11:283-291.
  33. Milani, E., M. Seyed, A. Razavi, A. Koocheki, V. Nikzadeh, N. Vahedi, M. Moeinfard and A. Gbolamhosseinpour. 2007. Moisture dependent physical properties of cucurbit seeds. International Agrophysics, 21:157-168.
  34. Mohsenin, N. N. 1986. Physical Properties of Plant and Animal Materials, 2nd Ed. Gordon and Breach Science Publishers, New York, USA.
  35. Nimkar, P. M. and P. K. Chattopadhyay. 2001. Some physical properties of green gram. Journal of Agricultural Engineering Research, 80:183-189. https://doi.org/10.1006/jaer.2000.0664
  36. Ogunjimi, L. A. O., N. A. Aviara and O. A. Aregbesola. 2002. Some engineering properties of locust bean seed. Journal of Food Engineering, 55:95-99. https://doi.org/10.1016/S0260-8774(02)00021-3
  37. Razavi, S. M. A. and E. Milani. 2006. Some physical properties of the water melon seeds. African Journal of Agricultural Research, 1:65-69.
  38. Sacilik, K., R. Ozturk and R. Keskin. 2003. Some physical properties of hemp seed. Biosystems Engineering, 86: 191-198. https://doi.org/10.1016/S1537-5110(03)00130-2
  39. Satimehin, A. A. and T. K. Philip. 2012. Physical properties of acha as affected by moisture content. Agricultural Engineering International: CIGR Journal, 14(4):231-237.
  40. Sessiz, A., R. Esgici and S. Kizil. 2007. Moisture dependent physical properties of caper (Capparis spp) fruit. Journal of Food Engineering, 79(4):1426-1431. https://doi.org/10.1016/j.jfoodeng.2006.04.033
  41. Shafiee, S., M. A. Modares, S. Minaee and K. Haidarbigi. 2009. Moisture dependent physical properties of dragon head seeds (Lallemantia Iberia). Agricultural Engineering international: The CIGR e-journal XI, manuscript 1192.
  42. Shafiee, S., A. M. Motlagh and S. Minaei. 2010. Moisture dependent physical properties of fennel seeds. African Journal of Agricultural Research, 5(17):2315-2320.
  43. Simonyan, K. J., A. M. El-Okene and Y. D. Yiljep. 2007. Some physical properties of Samaru sorghum 17. Agricultural Engineering international: The CIGR e- journal IX, manuscript FP 07 008.
  44. Simonyan, K. J., Y. D. Yiljep, O. B. Oyatoyan and G. S. Bawa. 2009. Effects of moisture content on some physical properties of Lablab purpure (L.) sweet seeds. Agricultural Engineering International: The CIGR e-journal XI, manuscript 1279.
  45. Singh, K. K. and T. K. Goswani. 1996. Physical properties of cumin seed. Journal of Agricultural Engineering Research, 64:93-98. https://doi.org/10.1006/jaer.1996.0049
  46. Suthar, S. H. and S. K. Das. 1996. Some physical properties of karingda (Citrullus lanatus [Thumb] mansf.) seeds. Journal of Agricultural Engineering Research, 65:15-22. https://doi.org/10.1006/jaer.1996.0075
  47. Tabatabaeefar, A. 2003. Moisture dependent physical properties of wheat. International Agrophysics, 17: 207-211.
  48. Tunde-Akintunde, T. Y. and B. O. Akintunde. 2007. Effect of moisture content and variety on selected physical properties of beniseed. Agricultural Engineering International: The CIGR e-journal IX, manuscript FP 07 021.
  49. Visvanathan, R., P. T. Palanisamy, L. Gothandapani and V. V. Sreenarayanan. 1996. Physical properties of neem nut. Journal of Agricultural Engineering Research, 63: 19-26. https://doi.org/10.1006/jaer.1996.0003
  50. Yalcin, C. and K. Ersan. 2007. Physical properties of coriander seeds. Journal of Food Engineering, 80(2): 408-416. https://doi.org/10.1016/j.jfoodeng.2006.02.042
  51. Zewdu, A. and W. Solomon. 2008. Physical properties of grass pea (Lathyrus sativus L.) seeds. Agricultural Engineering International: The CIGR e-journal X, manuscript FP 06 027.