• Title/Summary/Keyword: Particle and bulk densities

Search Result 9, Processing Time 0.024 seconds

Moisture-dependent Physical Properties of Detarium microcarpum Seeds

  • Aviara, Ndubisi A.;Onaji, Mary E.;Lawal, Abubakar A.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.212-223
    • /
    • 2015
  • Purpose: Physical properties of Detarium microcarpum seeds were investigated as a function of moisture content to explore the possibility of developing bulk handling and processing equipment. Methods: Seed size, surface area, and 1,000-seed weight were determined by measuring the three principal axes, measuring area on a graph paper, and counting and weighing seeds. Particle and bulk densities were determined using liquid displacement and weight in a measuring cylinder, respectively. Porosity was computed from particle and bulk densities. Roundness and sphericity were measured using shadowgraphs. Angle of repose and static and kinetic coefficients of friction were determined using the vertical cylindrical pipe method, an inclined plane, and a kinetic coefficient of friction apparatus. Results: In the moisture range of 8.2%-28.5% (db), the major, intermediate, and the minor axes increased from 2.95 to 3.21 cm, 1.85 to 2.61 cm, and 0.40 to 1.21 cm, respectively. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose increased from 354.62 to $433.19cm^2$, 3.184 to 3.737 kg, 1060 to $1316kg/m^3$, and 30.0% to 53.1%, respectively, whereas bulk density decreased from 647.6 to $617.2kg/m^3$. Angle of repose increased from $13.9^{\circ}$ to $28.4^{\circ}$. Static and kinetic coefficients of friction varied between 0.096 and 0.638 on different structural surfaces. Conclusions: Arithmetic mean, geometric mean, and equivalent sphere effective diameters determined at the same moisture level were significantly different from each other, with the arithmetic mean diameter being greatest. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose all increased linearly with moisture content. Bulk density decreased linearly with moisture content. The coefficients of friction had linear relationships with moisture content. The highest values of static and kinetic coefficients of friction were observed on galvanized steel and hessian fabric, respectively, whereas the lowest values were observed on fiberglass.

Hydrogeological Characterization of Petroleum Contaminated area in Kangwon (강원 유류오염지역의 수리지질 특성 연구)

  • Choi, Hyun-Mi;Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • Estimations of porosity and bulk density, particle size analysis of soli samples, tracer test and slug test were performed in a petroleum contaminated area of Kangwon for understanding characteristics of the aquifer. Porosities of the samples were estimated 0.158~0.257, and bulk densities were estimated as $1.73\sim2.10\;g/cm^3$. Majority proportion of the soil samples was 0.5~1.0 mm size. In the soil texture triangle, all samples were distributed at sand area. Uniformity coefficients were estimated as 7.71~10.39, and thus all samples were poorly-sorted. In the tracer test, Darcy velocity was estimated to $4.8\times10^{-6}$ cm/day, effective porosity was 0.175, and longitudinal dispersivity was 0.1 m. According to the slug test, hydraulic conductivities of the test wells were estimated as $2.243\times10^{-2}\sim1.634\times10^{-2}$ cm/sec. These hydrogeologic parameters can be used for efficient remediation design of the petroleum contaminated area.

A study on slim-hole density logging based on numerical simulation (소구경 시추공에서의 밀도검층 수치모델링 연구)

  • Ku, Bonjin;Nam, Myung Jin;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.227-234
    • /
    • 2012
  • In this study, we make simulation of density log using a Monte Carlo N-Particle (MCNP) algorithm to make an analysis on density logging under different borehole environments, since density logging is affected by various borehole conditions like borehole size, density of borehole fluid, thickness and type of casing, and so on. MCNP algorithm has been widely used for simulation of problems of nuclear particle transportation. In the simulation, we consider the specific configuration of a tool (Robertson Geologging Co. Ltd) that Korea institute of geoscience and mineral resources (KIGAM) has used. In order to measure accurate bulk density of a formation, it is essential to make a calibration and correction chart for the tool under considerations. Through numerical simulation, this study makes calibration plot of the density tool in material with several known bulk densities and with boreholes of several different diameters. In order to make correction charts for the density logging, we simulate and analyze measurements of density logging under different borehole conditions by considering borehole size, density of borehole fluid, and presence of casing.

Characteristics of Water Distribution and Transport Depending on Soil Evolution in the Different Forest Stands (상이(相異)한 임분(林分)의 토층분화(土層分化)에 따른 수분분포(水分分布)와 이동특성(移動特性))

  • Jin, Hyun-O;Chung, Doug-Young;Son, Yowhan;Joo, Yeong-Teuk;Oh, Jong-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.24-32
    • /
    • 2000
  • We investigated the patterns of soil horizon evolution and its water distribution on three different forest stands covered with Larix leptolepis, Pinus koraiensis, and Qercus mongolica on the Experimental Forest of Kyunghee University, located in Kwangju, Kyunggi-Do. Compared to the properties of depths of O and A horizons evolved on the Pinus koraiensis stand, the depths of O and A horizons on the forest stands of Larix leptolepis and Qercus mongolica were shallower, indicating that the soil horizon were deeply influenced by geographical characteristics, its erosive and sedimentary distinction, vegetation cover and its population density. And the bulk densities of the sites selected were lower in the high slope gradient than that in the lower slope gradient at the same depth of soil profile. Therefore, the changes of the soil bulk densities were closely related to the soil organic matter and the vertical transport of soil particle throughout soil depths. On the other hand, the bulk density and organic matter content in soil can influence the water transport phenomena, resulting in decrease of the hydraulic conductivity as the increase in the bulk density, while the organic matter can not affect the hydraulic conductivity on the soil surface layer. For a rainfall infiltration characteristics from a lysimeter experiment established on the stand of Larix leptolepis, the bulk density and slope gradient strongly influenced the vertical transport of water, as well as the lateral movement of rainfall. Conclusively, the characteristics of water movement and distribution in the forest stand can be determined not by the geographical factor such as slope gradient but also by the bulk density and organic matter content remained in soils.

  • PDF

Copolymerization of Ethylene and α-olefins with Embedded rac-Et[Ind]2ZrCl2 Catalyst (Embedded rac-Et[Ind]2ZrCl2 메탈로센 촉매를 이용한 Ethylene/α-olefin 공중합특성)

  • Shin, Dong Min;Chung, Jin Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.137-141
    • /
    • 2008
  • Copolymerization of ethylene and ${\alpha}$-olefin using $rac-Et[Ind]_2ZrCl_2/MAO$ catalyst embedded onto polysty-rene was examined. The embedded catalyst was prepared by polymerizing a small amount of styrene with $rac-Et[Ind]_2ZrCl_2$. The catalytic activities of the embedded catalyst were higher than those of the homogeneous catalystregardless of comonomer type and the characteristic of the active sites of the embedded catalyst was not affected duringthe embedding process. Based on the DSC and NMR analyses of the produced copolymers, it was thought that theembedded catalyst had similar or slightly better comonomer incorporation ability. Furthermore, the copolymers produced by the embedded catalyst had higher bulk densities and better particle morphology than those by the homogeneous catalyst.

Cations of Soil Minerals and Carbon Stabilization of Three Land Use Types in Gambari Forest Reserve, Nigeria

  • Falade, Oladele Fisayo;Rufai, Samsideen Olabiyi
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.2
    • /
    • pp.116-127
    • /
    • 2021
  • Predicting carbon distribution of soil aggregates is difficult due to complexity in organo-mineral formation. This limits global warming mitigation through soil carbon sequestration. Therefore, knowledge of land use effect on carbon stabilization requires quantification of soil mineral cations. The study was conducted to quantify carbon and base cations on soil mineral fractions in Natural Forest, Plantation Forest and Farm Land. Five 0.09 ha were demarcated alternately along 500 m long transect with an interval of 50 m in Natural Forest (NF), Plantation Forest (PF) and Farm Land (FL). Soil samples were collected with soil cores at 0-15, 15-30 and 30-45 cm depths in each plot. Soil core samples were oven-dried at 105℃ and soil bulk densities were computed. Sample (100 g) of each soil core was separated into >2.0, 2.0-1.0, 1.0-0.5, 0.5-0.05 and <0.05 mm aggregates using dry sieve procedure and proportion determined. Carbon concentration of soil aggregates was determined using Loss-on-ignition method. Mineral fractions of soil depths were obtained using dispersion, sequential extraction and sedimentation methods of composite soil samples and sieved into <0.05 and >0.05 mm fractions. Cation exchange capacity of two mineral fractions was measured using spectrophotometry method. Data collected were analysed using descriptive and ANOVA at α0.05. Silt and sand particle size decreased while clay increased with increase in soil depth in NF and PF. Subsoil depth contained highest carbon stock in the PF. Carbon concentration increased with decrease in aggregate size in soil depths of NF and FL. Micro- (1-0.5, 0.5-0.05 and <0.05 mm) and macro-aggregates (>2.0 and 2-1.0 mm) were saturated with soil carbon in NF and FL, respectively. Cation exchange capacity of <0.05 mm was higher than >0.05 mm in soil depths of PF and FL. Fine silt (<0.05 mm) determine the cation exchange capacity in soil depths. Land use and mineral size influence the carbon and cation exchange capacity of Gambari Forest Reserve.

Microstructure and plasma resistance of Y2O3-BN composites (Y2O3-BN 복합체의 미세구조 및 내플라즈마 특성)

  • Lee, Hyun-Kyu;Lee, Seokshin;Kim, Bi-Ryong;Park, Tae-Eon;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.127-132
    • /
    • 2014
  • $Y_2O_3$-BN ceramic composites were fabricated from the slurries of yttria powder with average particle size of 3~10 ${\mu}m$. The slurry was fabricated by mixing PVA binder, NaOH for Ph control, PEG, BN powder and $Y_2O_3$ powder. The mixed $Y_2O_3$ powders were obtained by spray drying process from the slurry. The $Y_2O_3$-BN composite specimen was shaped in size of ${\O}14mm$ and then sintered at $1550^{\circ}C$ and $1600^{\circ}C$, respectively. The characteristics, microstructure, purities, densities, bulk resistance, thermal expansion, hardness and plasma resistance of the $Y_2O_3$-BN composites were investigated with the function of BN contents and sintering temperature.

Physical and Chemical Quality of Organic by Product Fertilizers by Composting of Livestock Manure in Korea (가축분뇨를 원료로 하는 부산물 비료의 부숙화에 따른 물리화학적 특성변화)

  • Lee, Chang-Ho;Ok, Yong-Sik;Yoon, Young-Man;Kim, Dae-Yeon;Lim, Soo-Kil;Eom, Ki-Chul;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.224-229
    • /
    • 2006
  • Utilization of organic by-product fertilizers has many beneficial effects on agricultural activities and in aspects of the disposal of enormous amounts of livestock manure. Most of these beneficial effects are related to the improvement of soil condition, such as fertility status and physicochemical quality of soil. But, appropriate indexes are needed to effectively manage the quality of organic by-product fertilizers amended on soil. To find chemical and physical standard to control the compost quality, the changes in chemical and physical characteristics of organic by-product fertilizers during composting were investigated, and also an appropriate physical method for this end. The results showed chemical properties, such as humic acid content, OM/N ratio, cation exchange capacity and salt content, had significant relationships during the composting. The water content, particle and bulk densities, particle size and color indices, as physical properties, were also applicable factors for the quality control of compost.

Effects of Rainfall Events on Soil in Orchard Field under Herbicide Treatment. 1. Temporal Characteristics in Soil Physical and Chemical Properties (제초제 처리 과수원 포장에서 강우 사상의 효과. 1. 토양 물리성과 화학성의 변화)

  • Chung, Doug-Young;Kim, Pil-Joo;Park, Mi-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.25-35
    • /
    • 2010
  • The periodic application effects of two different herbicides on soil physical properties were observed in a slightly hilly orchard of pear tree located on the southestern flank of the Palbong Mountain in Gongju Chungnam : (1) bare surface vegetation; (2) glyphosate-treated plot; (3) paraquat-treated plot. The slope of experimental plots ranged from 5.5%to 10.2%at an altitude of 125 mand 896 $m^2$ ($28m{\times}32m$) in area. The total respective rainfall events were 47, 52, 52 times during experimental period from 2006 to 2008, while approximately 65 percent of daily rainfall intensity from2006 to 2008 was less than 20 mm a day. The organic matter contents on the surface 15 cm soil ranging from1.23%to 1.84%in 2006 were changed into from1.35 %to 2.28%in 2008 in the order of control > glyphosate > paraquat > bare plot in 2008, indicating that the herbicide treatment influenced the accumulation organic matter in soil. The changes in soil particle contents showed that the loss of soil particles in top 5 cm soil depth was greater in a bare soil than in other treatments such as control, glyphosate, and paraquat-treated plot. The net changes in the bulk densities showed that there were little variations between May of 2006 and Nov. of 2008 even though there were some losses of the soil particles. The soil strength of the glyphosate-treated bare plots was much greater than those of other plots such as control, glyphosate, and paraquat plots. However the soil strengths in control plots were lower than those in the plots of glyphosate and paraquat treated ones.