DOI QR코드

DOI QR Code

Manufacturing Method for Sensor-Structure Integrated Composite Structure

센서-구조 일체형 복합재료 구조물 제작 방법

  • Han, Dae-Hyun (Dept. of Mechatronics Engineering, and LANL-CBNU Engineering Institute Korea, Chonbuk National University) ;
  • Kang, Lae-Hyong (Dept. of Mechatronics Engineering, and LANL-CBNU Engineering Institute Korea, Chonbuk National University) ;
  • Thayer, Jordan (Los Alamos National Laboratory) ;
  • Farrar, Charles (Los Alamos National Laboratory)
  • Received : 2015.06.30
  • Accepted : 2015.08.27
  • Published : 2015.08.31

Abstract

A composite structure was fabricated with embedded impact detection capabilities for applications in Structural Health Monitoring (SHM). By embedding sensor functionality in the composite, the structure can successfully perform impact localization in real time. Smart resin, composed of $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb(Zr,\;Ti)O_2$ (PNN-PZT) powder and epoxy resin with 1:30 wt%, was used instead of conventional epoxy resin in order to activate the sensor function in the composite structure. The embedded impact sensor in the composite was fabricated using Hand Lay-up and Vacuum Assisted Resin Transfer Molding(VARTM) methods to inject the smart resin into the glass-fiber fabric. The electrodes were fabricated using silver paste on both the upper and bottom sides of the specimen, then poling treatment was conducted to activate the sensor function using a high voltage amplifier at 4 kV/mm for 30 min at room temperature. The composite's piezoelectric sensitivity was measured to be 35.13 mV/N by comparing the impact force signals from an impact hammer with the corresponding output voltage from the sensor. Because impact sensor functionality was successfully embedded in the composite structure, various applications of this technique in the SHM industry are anticipated. In particular, impact localization on large-scale composite structures with complex geometries is feasible using this composite embedded impact sensor.

본 연구는 복합재료 구조물에 전기-기계 변환 기능을 융합한 센서-구조 일체형 복합재료 구조물 제작 방법에 관한 것으로 복합재료 구조물 자체가 센서 역할을 수행할 수 있도록 하여 구조 스스로 충격이나 진동 신호를 감지하고 손상 위치 또는 손상 정도를 실시간으로 모니터링 할 수 있는 다기능 복합 구조물에 관한 연구이다. 복합재 구조물에 전기-기계 변환 기능을 부여하기 위해 복합재 제작에 사용되는 에폭시 수지 대신 전기-기계 변환기능을 갖는 $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb(Zr,\;Ti)O_2$ (PNN-PZT) 분말과 에폭시 수지를 1:30 wt% 혼합하여 제작된 스마트 수지를 사용하였다. Hand Lay-up 공법과, VARTM(Vacuum Assisted Resin Transfer Molding) 성형 방법을 이용하여 유리섬유에 스마트 수지를 함침시켜 센서-구조 일체형 복합재료 구조물을 제작하였다. 구조물을 센서로 사용하기위해 시편의 윗면과 아랫면에 전도성 도료를 사용하여 전극을 제작하였고, 고전압 앰프를 이용하여 상온에서 30분간 4kV/mm의 전계로 분극 처리를 수행하였다. 이후 충격망치를 사용하여 시편에 충격을 가했을 때 출력되는 전기 신호와 충격망치 신호를 비교하여 충격 신호 감응 및 감도를 측정하고 그 결과를 기술하였다.

Keywords

References

  1. Park, I.K., Seo, Y., and Kim, B.H., "Development of Liquid Metal Strain Gauge for Measuring WT Blade's Deformation," Journal of the Korean Society for Precision Engineering, Vol. 32, No. 3, 2015, pp. 307-314. https://doi.org/10.7736/KSPE.2015.32.3.307
  2. White, J.R., De Poumeyrol, B., Hale, J.M., and Stephenson, R., "Piezoelectric Paint: Ceramics-polymer Composites for Vibration Sensors," Journal of Material Science, Vol. 39, No. 9, 2004, pp. 3105-3114. https://doi.org/10.1023/B:JMSC.0000025839.98785.b9
  3. Zhang, Y. and Li, X., "Analytical Study of Piezoelectric Paint Sensor for Acoustic Emission-based Fracture Monitoring," Fatigue & Fracture of Engineering Materials & Structures, Vol. 31, No. 8, 2006, pp. 684-694. https://doi.org/10.1111/j.1460-2695.2008.01249.x
  4. Kanno, I., Kotera, H., and Wasa, K., "Measurement of Transverse Piezoelectric Properties of PZT Thin Films," Sensor and actuators A, Vol. 107, No. 1, 2003, pp. 68-74. https://doi.org/10.1016/S0924-4247(03)00234-6
  5. Egusa, S. and Iwasawa, N., "Thickness Dependence of the Poling and Current-voltage Characteristics of Paint Films Made Up of Lead Zirconate Titanate Ceramic Powder and Epoxy Resin," Applied Physics Letters, Vol. 78, No. 10, 1995, pp. 6060.
  6. Byun, K.J., Ha, J.R., Kim, B.S., Joe, C.R., and Ok, J.S., "Mechanical Properties of VARTM Processed Abaca Fabric Composites," Journal of the Korean Society for Composite Materials, Vol. 25, No. 6, 2012, pp. 198-204. https://doi.org/10.7234/kscm.2012.25.6.198
  7. Kim, S.Y., Shim, C.S., Sturtevant, C., Kim, D.W., and Song, H.C., "Mechanical Properties and Production Quality of Hand-Layup and Vacuum Infusion Processed Hybrid Composite Materials for GFRP Marine Structures," International Journal of Naval Architecture and Ocean Engineering, Vol. 6, No. 3, 2014, pp. 723-736. https://doi.org/10.2478/IJNAOE-2013-0208
  8. Han, D.H., Park, S.B., and Kang, L.H., "Sensitivity Measurement of the Piezoelectric Paint Sensor according to the Poling Electric Field," Composite Research, Vol. 27, No. 4, 2014, pp. 146-151. https://doi.org/10.7234/composres.2014.27.4.146

Cited by

  1. A Study on the Characteristics of Wireless Sensor Powered by IDE Embedded Piezoelectric Cantilever Generators Using Conveyor Vibration vol.29, pp.12, 2016, https://doi.org/10.4313/JKEM.2016.29.12.769
  2. Characteristics and fabrication of piezoelectric GFRP using smart resin prepreg for detecting impact signals vol.167, pp.None, 2015, https://doi.org/10.1016/j.compscitech.2018.08.002