DOI QR코드

DOI QR Code

Validation of Piezoelectric Sensor Diagnostics Algorithm Using Instantaneous Baseline Data

Admittance를 기반으로 한 센서 자가 진단 알고리즘의 실험적 검증 - 상호비교를 통한 센서 결함 탐지

  • Jo, HyeJin (Department of Mechanical Engineering, Chonnam National University) ;
  • Jung, Hwee Kwon (Department of Mechanical Engineering, Chonnam National University) ;
  • Park, Tong il (Department of Mechanical Engineering, Chonnam National University) ;
  • Park, Gyuhae (Department of Mechanical Engineering, Chonnam National University)
  • Received : 2015.06.30
  • Accepted : 2015.08.27
  • Published : 2015.08.31

Abstract

In order to detect damage in early stages and properly maintaining structures, the structural health monitoring technology is employed. In most cases, active-sensing SHM needs many piezoelectric (PZT) sensors and actuators. Thus, if there is a defect on PZT used for active-sensing SHM, the structural status could be misclassified. This study, for reliable SHM performance, investigated to detect defects of sensors by using the admittance-based sensor diagnostics. This study also introduced an algorithm that can diagnose sensor defects based only on data measured from the sensors in case that information about the changes in adhesive and environmental investigation, this study confirms that the proposed algorithm could be efficiently applied to real-world structures in which a significant temperature variation could take place.

구조건전성 모니터링은 구조물에 발생된 손상을 조기에 감지 및 적절한 유지보수를 통해 재정적 혹은 인명 피해를 방지하기 위해 실시된다. 대부분의 능동센싱 기반 구조건전성 모니터링에서는 많은 수의 압전체(piezoelectric transducer) 센서와 구동기(actuator)를 필요로 한다. 구조건전성 모니터링 시 사용된 압전센서에 결합이 존재하는 경우, 구조물의 상태진단에 문제가 발생할 수 있다. 본 연구에서는 신뢰성 있는 구조건전성 모니터링 결과를 위해 임피던스 기반 센서 자가 진단법을 사용하여 다수 센서의 결함을 탐지하였다. 또한 사용된 접착제와 센서의 정보가 충분치 못한 경우, 사용된 센서로부터 측정된 데이터만을 토대로 센서결함 진단을 위한 알고리즘을 소개하였다. 알고리즘이 적용 가능한 온도 범위를 실험적으로 분석함으로써 개발된 기법이 실제 환경에서 응용이 가능함을 확인하였다.

Keywords

References

  1. Farrar, C.R. and Worden, K., "An Introduction to Structural Health Monitoring", Mathematical Physical & Engineering Sciences, Vol. 365, 2007, pp 303-315. https://doi.org/10.1098/rsta.2006.1928
  2. Kim, I.G., Lee, H.J., Kim, J.Y. et al., "Structural Health and Usage Monitoring System(HUMS) - Recent Advances", The Korean Society for Aeronautical & Space Sciences, 2003, pp. 943-950.
  3. Park, G., Farrar, C.R., Lanza di Scalea et al., "Performance Assessment and Validation of Piezoelectric Active Sensors in Structural Health Monitoring", Smart Materials and Structures, Vol. 15, No. 6, 2006, pp. 1673-1683. https://doi.org/10.1088/0964-1726/15/6/020
  4. Kerschen, G., De Boe, P., Golincal, J. et al., "Sensor Validation Using Principal Component Analysis", Smart Materials and Structures, Vol. 14, 2005, pp. 36-42. https://doi.org/10.1088/0964-1726/14/1/004
  5. Lee, U.S. and Choi, J.S., "Structural Damage Method by Using the Time-reversal Property of Guided Waves", Journal of the Korean Society for Precision Engineering, Vol. 27, No. 6, 2010, pp. 66-74.
  6. Giurgiutiu, V., Zagrai, A.N., and Bao, J.J., "Piezoelectric Wafer Embedded Active Sensors foR Aging Aircraft Structural Health Monitoring", Journal of Structural Health Monitoring, Vol. 1, 2012, pp. 41-61.
  7. Xu, Y.G. and Liu, G.T., "A Modified Electro-mechanical Impedance Model of Piezoelectric Actuator-sensors for Debonding Detection of Composite Patches", Journal of Intelligent Material Systems and Structures, Vol. 13, 2002, pp. 389-396. https://doi.org/10.1177/104538902761696733
  8. Fabrico, G.B., Dannilo, E.B., Vincius, A.D. et al., "An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-based Structural Health Monitoring", Sensors, Vol. 14, No. 1, 2014, pp. 1208-1227. https://doi.org/10.3390/s140101208
  9. Park, G., Farrar, C.R., Rutherford, A.C. et al., "Piezoelectric Active Sensor Self-diagnostics Using Electrical Admittance Measurements", Journal of Vibration and Acoustics, Vol. 128, 2006, pp. 469-476. https://doi.org/10.1115/1.2202157
  10. Park, G., Farrar, C.R. et al., "Perfomance Assessment and Validation of Piezoelectric Active Sensors in Structural Health Monitoring", Smart Materials and Structures, Vol. 15, No. 6, 2006, pp. 1673-1683. https://doi.org/10.1088/0964-1726/15/6/020
  11. Bhalla, S. and Moharana, S., "Modeling of Piezo-bond Structure System for Structural Health Monitoring Using EMI Technique", Key Engineering Materials, 2013, pp. 569-570.
  12. Jo, H.J., Park, T. ,and Park, G., "The Effect of Temperature Variations and Bonding Agents on Piezoelectric Sensor Diagnostics", The Korean Society for Noise and Vibration Engineering 2013, Vol. 10, 2013, pp. 779-804.
  13. Grisso, B.L. and Inman, D.J., "Temperature Corrected Sensor Diagnostics for Impedance Based SHM", Journal of Sound and Vibration, Vol. 329, 2010, pp. 2323-2336. https://doi.org/10.1016/j.jsv.2009.04.007
  14. Overly, T.G., Park, G., Farinholt, K.M. et al., "Piezoelectric Active-sensor Diagnostics and Validation Using Instantaneous Baseline Data", IEEE Sensors Journal, Vol. 9, 2009, pp. 1414-1421. https://doi.org/10.1109/JSEN.2009.2018351
  15. Park, S., Ahmad, S., Yun, C.B. et al., "Multiple Crack Detection of Concrete Structures Using Impedance Based Structural Health Monitoring Techniques", Society for experimental mechanics, Vol. 46, 2006, pp. 609-618. https://doi.org/10.1007/s11340-006-8734-0
  16. Park, S., Shon, H., Farrar, C.R. et al., "Overview of Piezoelectric Impedance Based Health Monitoring and Path Forward", Shock and Vibration Digest, Vol. 35, 2003, pp. 451-463. https://doi.org/10.1177/05831024030356001
  17. Sun, F.P., Chaudhry, Z., Liang, C. et al., "Truss Structure Integrity Identification Using pzt Sensor-actuator", Journal of Intelligent Material Systems and Structures, Vol. 6, 1995, pp. 134-139. https://doi.org/10.1177/1045389X9500600117
  18. Sirohi, J. and Chopra, I., "Fundamental behavior of Piezoceramic Sheet Actuators", Journal of Intelligent Material Systems and Structures, Vol. 11, 2000, pp. 47-61. https://doi.org/10.1106/WV49-QP37-4Q1M-P425
  19. Peairs, D.M., Park, G., and Inman, D.J., "Improving Accessibility of the Impedance-based Structural Health Monitoring Method", SJournal of Intelligent Material Systems and Structures, Vol. 15, 2004, pp. 129-139. https://doi.org/10.1177/1045389X04039914