DOI QR코드

DOI QR Code

Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

  • Cho, Won Kyong (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Hyun, Tae Kyung (Department of Industrial Plant Science and Technology,College of Agricultural, Life and Environmental Sciences, Chungbuk National University) ;
  • Kumar, Dhinesh (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Rim, Yeonggil (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Chen, Xiong Yan (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Jo, Yeonhwa (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Suwha (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Lee, Keun Woo (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Park, Zee-Yong (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Lucas, William J. (Department of Plant Biology, University of California) ;
  • Kim, Jae-Yean (Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • Received : 2015.02.06
  • Accepted : 2015.06.01
  • Published : 2015.08.31

Abstract

Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.

Keywords

References

  1. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSIBLAST:a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Baluska, F., Hlavacka, A., Volkmann, D., and Menzel, D. (2004). Getting connected: actin-based cell-to-cell channels in plants and animals. Trends Cell Biol. 14, 404-408. https://doi.org/10.1016/j.tcb.2004.07.001
  3. Bayer, E.M., Bottrill, A.R., Walshaw, J., Vigouroux, M., Naldrett, M.J., Thomas, C.L., and Maule, A.J. (2006). Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6, 301-311. https://doi.org/10.1002/pmic.200500046
  4. Bendtsen, J.D., Jensen, L.J., Blom, N., Von Heijne, G., and Brunak, S. (2004). Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17, 349-356. https://doi.org/10.1093/protein/gzh037
  5. Bhushan, D., Pandey, A., Chattopadhyay, A., Choudhary, M.K., Chakraborty, S., Datta, A., and Chakraborty, N. (2006). Extracellular matrix proteome of chickpea (Cicer arietinum L.) illustrates pathway abundance, novel protein functions and evolutionary perspect. J. Proteome Res. 5, 1711-1720. https://doi.org/10.1021/pr060116f
  6. Borderies, G., Jamet, E., Lafitte, C., Rossignol, M., Jauneau, A., Boudart, G., Monsarrat, B., Esquerre-Tugaye, M.T., Boudet, A., and Pont-Lezica, R. (2003). Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis. Electrophoresis 24, 3421-3432. https://doi.org/10.1002/elps.200305608
  7. Brewis, I.A., Turner, A.J., and Hooper, N.M. (1994). Activation of the glycosyl-phosphatidylinositol-anchored membrane dipeptidase upon release from pig kidney membranes by phospholipase C. Biochem. J. 303, 633-638. https://doi.org/10.1042/bj3030633
  8. Charmont, S., Jamet, E., Pont-Lezica, R., and Canut, H. (2005). Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds. Phytochemistry 66, 453-461. https://doi.org/10.1016/j.phytochem.2004.12.013
  9. Chen, X.Y., Kim, S.T., Cho, W.K., Rim, Y., Kim, S., Kim, S.W., Kang, K.Y., Park, Z.Y., and Kim, J.Y. (2009). Proteomics of weakly bound cell wall proteins in rice calli. J. Plant Physiol. 166, 675-685. https://doi.org/10.1016/j.jplph.2008.09.010
  10. Chivasa, S., Ndimba, B.K., Simon, W.J., Robertson, D., Yu, X.L., Knox, J.P., Bolwell, P., and Slabas, A.R. (2002). Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23, 1754-1765. https://doi.org/10.1002/1522-2683(200206)23:11<1754::AID-ELPS1754>3.0.CO;2-E
  11. Cho, W.K., Chen, X.Y., Chu, H., Rim, Y., Kim, S., Kim, S.T., Kim, S.W., Park, Z.Y., and Kim, J.Y. (2009). Proteomic analysis of the secretome of rice calli. Physiol. Plant. 135, 331-341. https://doi.org/10.1111/j.1399-3054.2008.01198.x
  12. Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., and Liu, J. (2005). A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5, 3162-3172. https://doi.org/10.1002/pmic.200401148
  13. Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462-469. https://doi.org/10.1104/pp.103.027979
  14. Dahal, D., Pich, A., Braun, H.P., and Wydra, K. (2010). Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach. Plant Mol. Biol. 73, 643-658. https://doi.org/10.1007/s11103-010-9646-z
  15. Denecke, J., De Rycke, R., and Botterman, J. (1992). Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J. 11, 2345-2355.
  16. Eisenhaber, B., Wildpaner, M., Schultz, C.J., Borner, G.H., Dupree, P., and Eisenhaber, F. (2003). Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequenceand genome-wide studies for Arabidopsis and rice. Plant Physiol. 133, 1691-1701. https://doi.org/10.1104/pp.103.023580
  17. Edwards, S.R., Braley, R., and Chaffin, W.L. (1999). Enolase is present in the cell wall of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 177, 211-216. https://doi.org/10.1111/j.1574-6968.1999.tb13734.x
  18. Eichenbaum, Z., Green, B.D., and Scott, J.R. (1996). Iron starvation causes release from the group A streptococcus of the ADPribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate-dehydrogenase. Infect. Immun. 64, 1956-1960.
  19. Emanuelsson, O., Brunak, S., von Heijne, G., and Nielsen, H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953-971. https://doi.org/10.1038/nprot.2007.131
  20. Fankhauser, N., and Maser, P. (2005). Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21, 1846-1852. https://doi.org/10.1093/bioinformatics/bti299
  21. Feiz, L., Irshad, M., Pont-Lezica, R.F., Canut, H., and Jamet, E. (2006). Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls. Plant Methods 2, 10. https://doi.org/10.1186/1746-4811-2-10
  22. Ge, C., Wan, D., Wang, Z., Ding, Y., Wang, Y., Shang, Q., Ma, F., and Luo, S. (2008). A proteomic analysis of rice seedlings responding to 1,2,4-trichlorobenzene stress. J. Environ. Sci. (China) 20, 309-319. https://doi.org/10.1016/S1001-0742(08)60049-2
  23. Gotz, S., Garcia-Gomez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J., Robles, M., Talon, M., Dopazo, J., and Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420-3435. https://doi.org/10.1093/nar/gkn176
  24. Gozalbo, D., Gil-Navarro, I., Azorín, I., Renau-Piqueras, J., J.P., and Gil, M.L. (1998). The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect. Immun. 66, 2052-2059.
  25. Groover, A.T., Fontana, J.R., Arroyo, J.M., Yordan, C., McCombie, W.R., and Martienssen, R.A. (2003). Secretion trap tagging of secreted and membrane-spanning proteins using Arabidopsis gene traps. Plant Physiol. 132, 698-708. https://doi.org/10.1104/pp.103.020099
  26. Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282. https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  27. Jamet, E., Albenne, C., Boudart, G., Irshad, M., Canut, H., and Pont-Lezica, R. (2008). Recent advances in plant cell wall proteomics. Proteomics 8, 893-908. https://doi.org/10.1002/pmic.200700938
  28. Jensen, L.J., and Bork, P. (2010). Ontologies in quantitative biology: a basis for comparison, integration, and discovery. PLoS Biol. 8, e1000374. https://doi.org/10.1371/journal.pbio.1000374
  29. Jung, Y.H., Jeong, S.H., Kim, S.H., Singh, R., Lee, J.E., Cho, Y.S., Agrawal, G.K., Rakwal, R., and Jwa, N.S. (2008). Systematic secretome analyses of rice leaf and seed callus suspensioncultured cells: workflow development and establishment of highdensity two-dimensional gel reference maps. J. Proteome Res. 7, 5187-5210. https://doi.org/10.1021/pr8005149
  30. Keegstra, K. (2010). Plant cell walls. Plant Physiol. 154, 483-486. https://doi.org/10.1104/pp.110.161240
  31. Kim, S.T., Kang, Y.H., Wang, Y., Wu, J., Park, Z.Y., Rakwal, R., Agrawal, G.K., Lee, S.Y., and Kang, K.Y. (2009). Secretome analysis of differentially induced proteins in rice suspensioncultured cells triggered by rice blast fungus and elicitor. Proteomics 9, 1302-1313. https://doi.org/10.1002/pmic.200800589
  32. Kim, S.G., Wang, Y., Lee, K.H., Park, Z.Y., Park, J., Wu, J., Kwon, S.J., Lee, Y.H., Agrawal, G.K., Rakwal, R., et al. (2013). Indepth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J. Proteomics 78, 58-71. https://doi.org/10.1016/j.jprot.2012.10.029
  33. Komatsu, S., Kobayashi, Y., Nishizawa, K., Nanjo, Y., and Furukawa, K. (2010). Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids 39, 1435-1349. https://doi.org/10.1007/s00726-010-0608-1
  34. Kong, F.J., Oyanagi, A., and Komatsu, S. (2010). Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim. Biophys. Acta 1804, 124-136. https://doi.org/10.1016/j.bbapap.2009.09.023
  35. Marcilla, A., Trelis, M., Cortes, A., Sotillo, J., Cantalapiedra, F., Minguez, M.T., Valero, M.L., Sánchez del Pino, M.M., Munoz-Antoli, C., Toledo, R., et al. (2012). Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS One 7, e45974. https://doi.org/10.1371/journal.pone.0045974
  36. Marques, M.A., Chitale, S., Brennan, P.J., and Pessolani, M.C. (1998). Mapping and identification of the major cell wallassociated components of Mycobacterium leprae. Infect. Immun. 66, 2625-2631.
  37. Millar, D.J., Whitelegge, J.P., Bindschedler, L.V., Rayon, C., Boudet, A.M., Rossignol, M., Borderies, G., and Bolwell, G.P. (2009). The cell wall and secretory proteome of a tobacco cell line synthesising secondary wall. Proteomics 9, 2355-2372. https://doi.org/10.1002/pmic.200800721
  38. Möller, S., Croning, M.D., and Apweiler, R. (2001). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646-653. https://doi.org/10.1093/bioinformatics/17.7.646
  39. Mulder, N., and Apweiler, R. (2007). InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol. Biol. 396, 59-70. https://doi.org/10.1007/978-1-59745-515-2_5
  40. Ndimba, B.K., Chivasa, S., Hamilton, J.M., Simon, W.J., and Slabas, A.R. (2003). Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3, 1047-1059. https://doi.org/10.1002/pmic.200300413
  41. Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., Thibaud-Nissen, F., Malek, R.L., Lee, Y., Zheng, L., et al. (2007). The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 35, D883-D887. https://doi.org/10.1093/nar/gkl976
  42. Pandey, A., Rajamani, U., Verma, J., Subba, P., Chakraborty, N., Datta, A., Chakraborty, S., and Chakraborty, N. (2010). Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J. Proteome Res. 9, 3443-3464. https://doi.org/10.1021/pr901098p
  43. Pettolino, F.A., Walsh, C., Fincher, G.B., and Bacic, A. (2012). Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 7, 1590-1607. https://doi.org/10.1038/nprot.2012.081
  44. Pierleoni, A., Martelli, P.L., and Casadio, R. (2008). PredGPI: a GPI-anchor predictor. BMC Bioinformatics 9, 392. https://doi.org/10.1186/1471-2105-9-392
  45. Rabouille, C., Malhotra, V., and Nickel, W. (2012). Diversity in unconventional protein secretion. J. Cell Sci. 125, 5251-5255. https://doi.org/10.1242/jcs.103630
  46. Robertson, D., Mitchell, G.P., Gilroy, J.S., Gerrish, C., Bolwell, G.P., and Slabas, A.R. (1997). Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants. J. Biol. Chem. 272, 15841-15848. https://doi.org/10.1074/jbc.272.25.15841
  47. Rose, J.K., and Lee, S.J. (2010). Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol. 153, 433-436. https://doi.org/10.1104/pp.110.154872
  48. Tan, L., Eberhard, S., Pattathil, S., Warder, C., Glushka, J., Yuan, C., Hao, Z., Zhu, X., Avci, U., Miller, J.S., et al. (2013). An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25, 270-287. https://doi.org/10.1105/tpc.112.107334
  49. Watson, B.S., Lei, Z., Dixon, R.A., and Sumner, L.W. (2004). Proteomics of Medicago sativa cell walls. Phytochemistry 65, 1709-1720. https://doi.org/10.1016/j.phytochem.2004.04.026
  50. Yan, J.X., Wait, R., Berkelman, T., Harry, R.A., Westbrook, J.A., Wheeler, C.H., and Dunn, M.J. (2000). A modified silver staining protocol for visualization of proteins compatible with matrixassisted laser desorption/ionization and electrospray ionizationmass spectrometry. Electrophoresis 21, 3666-3672. https://doi.org/10.1002/1522-2683(200011)21:17<3666::AID-ELPS3666>3.0.CO;2-6
  51. Yang, J.L., Zhu, X.F., Peng, Y.X., Zheng, C., Li, G.X., Liu, Y., Shi, Y.Z., and Zheng, S.J. (2011). Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol. 155, 1885-1892. https://doi.org/10.1104/pp.111.172221
  52. Zhu, J.K., Damsz, B., Kononowicz, A.K., Bressan, R.A., and Hasegawa, P.M. (1994). A higher plant extracellular vitronectin-like adhesion protein is related to the translational elongation factor-1 alpha. Plant Cell 6, 393-404.
  53. Zhu, J., Alvarez, S., Marsh, E.L., Lenoble, M.E., Cho, I.J., Sivaguru, M., Chen, S., Nguyen, H.T., Wu, Y., Schachtman, D.P., et al. (2007). Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol. 145, 1533-1548. https://doi.org/10.1104/pp.107.107250
  54. Zhou, L., Bokhari, S.A., Dong, C.J., and Liu, J.Y. (2011). Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. PLoS One 6, e16723. https://doi.org/10.1371/journal.pone.0016723

Cited by

  1. Arabidopsis thaliana RECEPTOR DEAD KINASE1 Functions as a Positive Regulator in Plant Responses to ABA vol.10, pp.2, 2017, https://doi.org/10.1016/j.molp.2016.11.011
  2. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics vol.4, pp.4, 2016, https://doi.org/10.3390/proteomes4040034
  3. Global proteome analysis in plants by means of peptide libraries and applications vol.143, 2016, https://doi.org/10.1016/j.jprot.2016.02.033
  4. Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World vol.6, pp.2, 2018, https://doi.org/10.3390/proteomes6020027
  5. Cell Wall Proteins Play Critical Roles in Plant Adaptation to Phosphorus Deficiency vol.20, pp.21, 2019, https://doi.org/10.3390/ijms20215259
  6. Investigation of cell wall proteins of C. sinensis leaves by combining cell wall proteomics and N-glycoproteomics vol.21, pp.1, 2015, https://doi.org/10.1186/s12870-021-03166-4