DOI QR코드

DOI QR Code

무선 센서 망에서 신뢰적 실시간 데이터 전송 프로토콜

Reliable Real-Time Data Dissemination Protocol in Wireless Sensor Networks

  • Yang, Taehun (Chungnam National University Department of Computer Engineering) ;
  • Yim, Yongbin (Chungnam National University Department of Computer Engineering) ;
  • Jung, Kwansoo (Chungnam National University Department of Computer Engineering)
  • 투고 : 2015.04.02
  • 심사 : 2015.08.11
  • 발행 : 2015.08.31

초록

본 논문은 실시간 전송을 위한 신뢰적 실시간 데이터 전송 프로토콜을 제안한다. 재전송은 전송 장애를 복구하는 방법으로 알려져 있지만, 딜레이로 인해 실시간 전송 요구사항에 위배될 수 있다. 제안하는 프로토콜은 브로드 캐스팅과 시간적 기회 배분 방법을 이용한다. 센서노드의 전송범위 내에는 실시간 전송 요구사항을 만족하는 다수의 이웃노드가 존재할 수 있다. 모든 이웃노드들은 한 센서노드로부터 브로드캐스팅된 데이터를 수신할 수 있고, 각 이웃노드는 시간적 기회 배분 방법을 이용하여 배정된 전송 시간슬롯에 다음 홉 노드에게 데이터를 전달한다. 시간적 기회 배분 방법은 데이터 전송이 가능한 시간슬롯과 실시간 전송 요구사항을 만족시키는 전송 허용시간을 이용한다. 송신노드는 전송 제한시간을 전송 허용시간으로 나누어 다수의 시간슬롯을 생성하며, 각 이웃노드의 전송 허용시간에 따라 하나의 시간슬롯에 다수의 센서노드가 포함 될 수 있다. 각 시간슬롯에서 전송 허용시간이 가장 짧은 노드부터 전송 우선권을 부여해 가능한 많은 노드에게 데이터 전달 기회를 제공한다.

This paper proposes a reliable real-time data dissemination protocol for mitigating transmission failure of real-time data in WSNs. The re-transmission is well-known for recovery of transmission failure, but this may violate the real-time requirement by transmission delay. To solve this problem, the proposed protocol exploits broadcasting nature and temporal opportunity allocation. In a radio-range of sending node, there may be neighbors satisfying the real-time requirement. The neighbors of specific node could receive data simultaneously by broadcasting, and decide their priority using temporal opportunity allocation method. The method uses time slot and tolerable time. The time slot specifies the priority and transmission deadline for each neighbors, and the tolerable time is the real-time requirement at the sending node. By giving the priority to the node with shorter tolerable time in each slot, we may get more opportunities to forward toward the destination. In other words, even if a node have the longer tolerable time, it still has a chance to forward with the real-time requirement. Simulation results show that the proposed protocol is superior to the existing protocols.

키워드

참고문헌

  1. I. F. Akyildiz, et al., "A survey on sensor networks," IEEE Commun. Mag., vol. 40, no. 8, pp. 102-114, Aug. 2002. https://doi.org/10.1109/MCOM.2002.1024422
  2. J. N. Al-Karaki and A. E. Kamal, "Routing techniques in wireless sensor networks: A survey," IEEE Wirel. Commun., vol. 11, no. 6, pp. 6-28, Dec. 2004.
  3. T. He, et al., "A spatiotemporal communication protocol for wireless sensor networks," IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 10, pp. 995-1006, Oct. 2005. https://doi.org/10.1109/TPDS.2005.116
  4. E. Felemban, C. Lee, and E. Ekici, "MMSPEED: multipath Multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks," IEEE Trans. Mob. Comput., vol. 5, no. 6, pp. 738-754, Jun. 2006. https://doi.org/10.1109/TMC.2006.79
  5. S. Lee, et al., "RREM: Multi-hop information based real-time routing protocol to support event mobility in wireless sensor networks," J. KICS, vol. 38A, no. 8, pp. 688-696, Aug. 2013. https://doi.org/10.7840/kics.2013.38A.8.688
  6. Y. Sankarasubramaniam, et al., "ESRT: Event-to-sink reliable transport in wireless sensor networks," in Proc. 4th ACM Int. Symp. Mob. Ad Hoc Netw. Comput. (MobiHoc '03), pp. 177-188, Annapolis, MD, USA, Jun. 2003.
  7. F. Stann and J. Heidemann, "RMST reliable data transport in sensor networks," in Proc. IEEE Int. Workshop Sensor Netw. Protocols and Appl., pp. 102-112, Anchorage, AK, USA, May 2003.
  8. B. Cho, et al., "Channel aware reliable routing protocol in wireless multimedia sensor networks," JKIICE, vol. 18, no. 2, pp. 459-465, Feb. 2014.
  9. A. Srinivas and E. Modiano, "Minimum energy disjoint path routing in wireless Ad-hoc networks," in Proc. 9th Annu. Int. Conf. Mob. Comput. Netw. (MobiCom '03), pp. 122-133, San Diego, California, USA, Sept. 2003.
  10. K. Jung, et al., "Flexible disjoint multipath routing protocol using local decision in wireless sensor networks," J. KICS, vol. 38B, no. 11, pp. 911-923, Nov. 2013. https://doi.org/10.7840/kics.2013.38B.11.911
  11. F. Ye, et al., "A Two-Tier data dissemination model for large-scale wireless sensor networks," in Proc. 8th Annu. Int. Conf. Mob. Comput. Netw. (MobiCom '02), pp. 148-159, Atlanta, Georgia, USA, Sept. 2002.
  12. D. Liu, I. Stojmenovic, and X. Jia, "A scalable quorum based location service in ad hoc and sensor networks," 2006 IEEE Int. Conf. MASS, pp. 489-492, Vancouver, BC, Canada, Oct. 2006.
  13. F. Yu, et al., "Sink location service for geographic routing in wireless sensor networks," 2008 IEEE WCNC, pp. 2111-2116, Las Vegas, NV, USA, Mar. 2008.
  14. B. Karp and H. T. Kung, "GPSR: Greedy perimeter stateless routing for wireless networks," in Proc. 6th Annu. Int. Conf. Mob. Comput. Netw. (MobiCom '00), pp. 243-254, Boston, Massachusetts, USA, Aug. 2000.
  15. N. Bulusu, J. Heidemann, and D. Estrin, "GPS-less low-cost outdoor localization for very small devices," IEEE Pers. Commun. Mag., vol. 7, no. 5, pp. 28-34, Oct. 2000.
  16. Scalable Network Technologies, Qualnet, [online] available: http://www.scalable-networks.com.
  17. J. Vales-Alonso, et al., "Performance evaluation of MAC transmission power control in wireless sensor networks," Computer Netw., vol. 51, no. 6, pp. 1483-1498, Apr. 2007. https://doi.org/10.1016/j.comnet.2006.08.001
  18. S. Oh, et al., "An opportunistic routing for real-time data in wireless sensor networks," 2013 IEEE WCNC, pp. 1157-1162, Shanghai, China, Apr. 2013.
  19. Y. Li, et al., "Enhancing real-time delivery in wireless sensor networks with two-hop information," IEEE Trans. Ind. Informatics, vol. 5, no. 2, pp. 113-122, May 2009. https://doi.org/10.1109/TII.2009.2017938

피인용 문헌

  1. 사물인터넷 환경에서 에너지 소모량을 줄이기 위한 네트워크 부호화 기반 정보 공유 방식 vol.41, pp.4, 2015, https://doi.org/10.7840/kics.2016.41.4.433
  2. 고 신뢰성 항공기 무선 네트워크 동향 및 기술 분석 vol.41, pp.12, 2015, https://doi.org/10.7840/kics.2016.41.12.1933