DOI QR코드

DOI QR Code

정보와 전력의 동시 전송을 최대화하기 위한 자원 관리 기법

Resource Management for Maximizing Simultaneous Transfer of Information and Power

  • Lee, Kisong (Department of Information and Telecommunication Engineering, Kunsan National University) ;
  • Kim, Minhoe (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Cho, Dong-Ho (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2015.05.07
  • 심사 : 2014.07.30
  • 발행 : 2015.08.31

초록

차세대 무선 통신 시스템에서는 효율적인 전력 사용을 위해서 서비스를 받지 않는 수신기는 송신기로부터 전송되는 신호를 이용하여 전력을 획득할 수 있는 환경을 고려하고 있다. 본 논문에서는 최적화 기법을 이용하여 시스템의 총 데이터 전송률과 전력 획득량을 동시에 최대화할 수 있는 서브 채널 및 파워 할당 기법을 제안한다. 시뮬레이션을 통하여 제안 기법은 시스템의 총 데이터 전송률과 전력 획득량을 균형있게 증가시킴을 보였다. 특히, 제안 기법은 기존 기법에 비해 미미한 데이터 전송률 저하를 보이지만 전력 획득량은 크게 증가시켜 효율적인 전력 사용을 가능하게 함을 보였다.

To enable the efficient use of energy, the environment where unscheduled receivers can harvest energy from the transmitted signal is considered in next-generation wireless communication systems. In this paper, we propose a scheme for allocating subchannel and power to maximize the system throughput and harvested energy simultaneously using optimization techniques. Through simulations, we verify that the proposed scheme can increase the system throughput and harvested energy harmoniously. In particular, the proposed scheme improves the harvested energy remarkably with a negligible degradation of system throughput, compared with conventional scheme, as a result, energy can be used efficiently in the system.

키워드

참고문헌

  1. M. Pinuela, P. Mitcheson, and S. Lucyszyn, "Ambient RF energy harvesting in urban and semi-urban environments," IEEE Trans. Microwave Theory Tech., vol. 61, no. 7, pp. 2715-2726, Jul. 2013. https://doi.org/10.1109/TMTT.2013.2262687
  2. L. R. Varshney, "Transporting information and energy simultaneously," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1612-1616, Jul. 2008.
  3. P. Grover and A. Sahai, "Shannon meets tesla: wireless information and power transfer," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 2363-2367, Jun. 2010.
  4. X. Zhou, R. Zhang, and C. K. Ho, "Wireless information and power transfer: architecture design and rate-energy tradeoff," IEEE Trans. Commun., vol. 61, no. 11, pp. 4754-4767, Nov. 2013. https://doi.org/10.1109/TCOMM.2013.13.120855
  5. O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, "Transmission with energy harvesting nodes in fading wireless channels: optimal policies," IEEE J. Sel. Areas in Commun.(JSAC), vol. 29, no. 8, pp. 1732-1743, Sept. 2011. https://doi.org/10.1109/JSAC.2011.110921
  6. J. Park and B. Clerckx, "Joint wireless information and energy transfer in a two-user MIMO interference channel," IEEE Trans. Wirel. Commun., vol. 12, no. 8, pp. 4210-4221, Aug. 2013. https://doi.org/10.1109/TWC.2013.071913.130084
  7. J. Park and B. Clerckx, "Joint wireless information and energy transfer in a K-user MIMO interference channel," IEEE Trans. Wirel. Commun., vol. 13, no. 10, pp. 5781-5796, Oct. 2014. https://doi.org/10.1109/TWC.2014.2341233
  8. K. Lee, D. H. Cho, and B. C. Chung, "Resource allocation method for improving energy efficiency and receiver fairness in wireless networks," J. KICS, vol. 40, no. 5, pp. 826-832, May 2015. https://doi.org/10.7840/kics.2015.40.5.826
  9. S. Lee, H. Yoo, and D. Kim, "Residual energy-aware duty-cycle scheduling scheme in energy harvesting wireless sensor networks," J. KICS, vol. 38B, no. 6, pp. 446-453, Nov. 2014.
  10. Z. Jin, D.-Y. Kim, and J. Cho, "An analysis of energy efficient cluster ratio for hierarchical wireless sensor networks," J. KICS, vol. 39B, no. 10, pp. 691-699, Jun. 2013.
  11. A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, "Relaying protocols for wireless energy harvesting and information processing," IEEE Trans. Wirel. Commun., vol. 12, no. 7, pp. 3622-3636, Jul. 2013. https://doi.org/10.1109/TWC.2013.062413.122042
  12. I. Krikidis, "Simultaneous information and energy transfer in largescale networks with/without relaying," IEEE Trans. Commun., vol. 62, no. 3, pp. 900-912, Mar. 2014. https://doi.org/10.1109/TCOMM.2014.020914.130825
  13. S. Lee, R. Zhang, and K. Huang, "Opportunistic wireless energy harvesting in cognitive radio network," IEEE Trans. Wirel. Commun., vol. 12, no. 10, pp. 4788-4799, Sept. 2013. https://doi.org/10.1109/TWC.2013.072613.130323
  14. D. T. Hoang, D. Niyato, P. Wang, and D. I. Kim, "Opportunistic channel access and RF energy harvesting in cognitive radio networks," IEEE J. Sel. Areas in Commun., vol. 32, no. 11, pp. 2039-2052, Nov. 2014. https://doi.org/10.1109/JSAC.2014.141108
  15. V. Chandrasekhar and J. Andrews, "Femtocell networks: a survey," IEEE Commun. Mag., vol. 46, no. 9, pp. 59-67, Sept. 2008. https://doi.org/10.1109/MCOM.2008.4623708
  16. Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, New York: McGraw-Hill, 1994.
  17. C. Mikeka and H. Arai, "Design of a cellular energy-harvesting radio," in Proc. 2009 Eur. Wirel. Tech. Conf., pp 73-75, Sept. 2009.
  18. H.-S. Chen and W. Gao, MAC and PHY proposal for 802.11af, Tech. Rep., Feb. Available: https://mentor.ieee.org/802.11/dcn/10/11-10-0258-00-00af-mac-and-phy-proposal-for-802-11af.pdf.
  19. IEEE P802.11 Wireless LANs, TGn channel models, IEEE 802.1103/940r4, Tech. Rep., May 2004.