DOI QR코드

DOI QR Code

토양에서 생물학적 동전기법의 영향에 의한 As의 이동

Improved Migration of Arsenic by Bio-Electrokinetics in Soil

  • Kim, Hong Tae (Department of Civil Engineering, Kyungpook National University) ;
  • Lee, Tae-Ryong (Department of Civil Engineering, Kyungpook National University)
  • 투고 : 2015.06.02
  • 심사 : 2015.08.07
  • 발행 : 2015.08.31

초록

본 연구에서는 비소로 오염된 지역의 토양 및 지하수에 동전기적 기술을 사용하고 배양된 토양 미생물과 배양액을 주입하여 토양 내의 토착 미생물을 활성화하여 비소의 이동도를 상승시키는 것이 주요목표이다. 생물학적 동전기법은 미생물의 전기적 이동을 이용하여 기존의 생물학적 복원에서 문제시 되어온 늦은 분해속도와 낮은 제거효율의 단점을 극복할 수 있었다. 이는 전극의 전해액 대신 토양 미생물과 배양액을 혼합 주입하여 유기물질을 전자 공여체로 이용하는 다양한 토양 미생물이 Fe, Mn 등을 환원하게 된다. 이에 따라 주변의 금속 산화 미생물이 As(III)를 As(V)로 변환시킴으로써 As(III)의 이동도가 증가하게 되고, 이로 인해 As의 이동도가 기존 동전기법의 약 30%에 비해 60 ~ 70%정도로 상승함을 확인하였다.

In this study, bio-electrokinetics was used to increase migration of arsenic by activating endemic microorganisms in the soil. In this technology, bio-electrokinetics which the cultured soil microorganisms and nutrients injected combines with biological technology. This technology using electrical movement of microorganisms could overcome the weakness of late degradation speed and low removal efficiency. And, various soil microorganisms reduce ferreous, manganese, etc., using organic matter by as an electron donor by injecting mixture of soil microorganisms and nutrients instead of using electrolyte of the electrode. Accordingly, surrounding metal oxide microorganisms convert arsenic (III) to arsenic (V) to increase migration of arsenic (III), in consequence, migration of arsenic increased in 60 to 70% compared to about 30% of conventional electrokinetics.

키워드

참고문헌

  1. Lovley DR., Phillips EJP, Lonergan DJ. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens, Appl. Environ. Microbiol., 55, 700-706.
  2. McLean JS, Lee JU, Beveridge TJ. 2002. Interactions of bacteria and environmental metals, fine-grained mineral development and bioremediation strategies. In: Huang PM, Bollag JM, Senesi N. (Eds.) Interactions between Soil Particles and Microorganisms: Impact on the Terrestrial Ecosystem, John Wiley and Sons, Chichester, England, pp. 227-261.
  3. Deshpande S, Wesson L, Wade D, Sabatini DA, Harwell JH. 2000. Dowfax Surfactant Component for Enhancing Contaminant Solubilization, Wat. Res., 34(3), 1030-1036. https://doi.org/10.1016/S0043-1354(99)00195-5
  4. Zhu S, Zhang J, Dong T. 2009. Removal of fluorine from contaminated field soil by anolyte enhanced electrokinetic remediation, Environ Earth Sci, 59, 379-384. https://doi.org/10.1007/s12665-009-0036-2
  5. Siegrist H, Reithaar S, Lais P. 1998. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Wat Sci Techn, 38, 241-248.
  6. Park SW, Lee TY, Yang JS, Kim KJ, Baek K. 2009. Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc, Journal of Hazardous Materials, 169, 1168-1172. https://doi.org/10.1016/j.jhazmat.2009.04.039
  7. Daghighi Y, Li D. 2010. Induced-charge electrokinetic phenomena, Microfluid Nanofluid, 9, 593-611. https://doi.org/10.1007/s10404-010-0607-2
  8. Zumft WG. 1997. Cell biology and molecular basis of denitrification, Microbiol Mol Biol Rev, 61, 533-616.
  9. 연규훈, 이평구, 염승준, 최상훈. 2005. 삼산제일광산 광미 내 유해 미량원소의 오염 및 이동도, 자원환경지질, 38, 451-464.(Yeon KH, Lee PK, Youm SJ, Choi SH. 2005. Contamination and mobility of toxic elements in tailings of samsanjeil mine, Econ. Environ. Gelo., 38(4), 451-464.)
  10. 윤삼석. 2002. Electrokinetic 기술에 의한 광산 퇴적토의 중금속 정화 특성, 경성대학교 박사학위 논문, 107-124.(Yoon SS. 2002. Characteristics of electrokinetic remediation on the heavy metal contaminated mine deposit, kyungsung university, pp.107-124.)
  11. 조아영, 이일규, 전은형, 안태영. 2003. Shewanella putrefaciens DK-1의 Fe(III) 환원 특성, The Korean Journal of Microbiology, 39(3), 175-180.(Cho AY, Lee IG, Jeon EH, Ahn TY. 2003. Utilization of Various Electron Acceptors in Shewanella putrefaciens DK-1, The Korean Journal of Microbiology, (39)3, 175-180.)
  12. 김홍태, 이태룡. 2013. 배지의 특성에 따른 토양미생물 활성이 Bio-electrokinetics에서 Pb와 Cu의 이동성에 미치는 영향, 한국방재학회, 13(3), 247-251.(Kim HT, Lee TR. 2013. Effect of soil microbes on electromigration according to the characteristics of the media of lead and copper by bio-electrokinetics, Journal of KOSHAM, 13(3), 247-251.)
  13. 이명호, 김대호, 김수삼. 2008. 점토슬러지의 초기 함수비 및 공급 전압구배가 동전기적 정화효율에 미치는 영향, 대한폐기물학회, 25(3), 253-259.(Lee MH, Kim DH, Kim SS. 2008. The Influence of Electrical Intensity and Initial Moisture Content on the Electrokinetic Remedial Efficiency of Heavy Metal Contaminated Slurry, korea society of waste management, 25(3), 253-259.)