DOI QR코드

DOI QR Code

Dynamic Characteristics of Water Column Properties based on the Behavior of Water Mass and Inorganic Nutrients in the Western Pacific Seamount Area

서태평양 해저산 해역에서 수괴와 무기영양염 거동에 기초한 동적 수층환경 특성

  • Son, Juwon (Deep-sea and Seabed Mineral Resources Research Center, KIOST) ;
  • Shin, Hong-Ryeol (Department of Atmospheric Science, Kongju National University) ;
  • Mo, Ahra (Deep-sea and Seabed Mineral Resources Research Center, KIOST) ;
  • Son, Seung-Kyu (Deep-sea and Seabed Mineral Resources Research Center, KIOST) ;
  • Moon, Jai-Woon (Deep-sea and Seabed Mineral Resources Research Center, KIOST) ;
  • Kim, Kyeong-Hong (Deep-sea and Seabed Mineral Resources Research Center, KIOST)
  • 손주원 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 신홍렬 (공주대학교 자연과학대학 대기과학과) ;
  • 모아라 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 손승규 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 문재운 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 김경홍 (한국해양과학기술원 심해저광물자원연구센터)
  • Received : 2015.04.24
  • Accepted : 2015.07.02
  • Published : 2015.08.25

Abstract

In order to understand the dynamic characteristics of water column environments in the Western Pacific seamount area (approximately $150.2^{\circ}E$, $20^{\circ}N$), we investigated the water mass and the behavior of water column parameters such as dissolved oxygen, inorganic nutrients (N, P), and chlorophyll-a. Physico-chemical properties of water column were obtained by CTD system at the nine stations which were selected along the east-west and south-north direction around the seamount (OSM14-2) in October 2014. From the temperature-salinity diagram, the main water masses were separated into North Pacific Tropical Water and Thermocline Water in the surface layer, North Pacific Intermediate Water in the intermediate layer, and North Pacific Deep Water in the bottom layer, respectively. Oxygen minimum zone (OMZ, mean $O_2$ $73.26{\mu}M$), known as dysoxic condition ($O_2<90{\mu}M$), was distributed in the depth range of 700~1,200 m throughout the study area. Inorganic nutrients typified by nitrite + nitrate and phosphate showed the lowest concentration in the surface mixed layer and then gradually increased downward with representing the maximum concentration in the OMZ, with lower N:P ratio (13.7), indicating that the nitrogen is regarded as limiting factor for primary production. Vertical distribution of water column parameters along the east-west and south-north station line around the seamount showed the effect of bottom water inflowing at around 500 m deep in the western and southern region, and concentrations of water column parameters in the bottom layer (below 2,500 m deep) of the western and southern region were differently distributed comparing to those of the other side regions (eastern and northern). The value of Excess N calculated from Redfield ratio (N:P=16:1) represented the negative value throughout the study area, which indicated the nitrogen sink dominant environments, and relative higher value of Excess N observed in the bottom layer of western and southern region. These observations suggest that the topographic features of a seamount influence the circulation of bottom current and its effects play a significant role in determining the behavior of water column environmental parameters.

서태평양에 위치한 해저산 해역($150.2^{\circ}E$, $20^{\circ}N$ 부근)에서 수층 환경의 동적 특성을 파악하고자 수괴 및 용존산소, 무기영양염(질소, 인), 엽록소-a 등과 같은 수층 환경 인자의 거동을 살펴보았다. 2014년 10월에 해저산(OSM14-2)을 중심으로 동-서 및 남-북 방향으로 총 9개의 정점에서 CTD system을 이용하여 물리 화학적 자료를 획득하였다. 수온-염분 도표로부터 연구 해역에서 파악된 수괴는 표층에서 북태평양 열대수와 수온약층수, 중층에서 북태평양 중층수 그리고 저층에서 북태평양 심층수로 구분되었다. 용존산소 농도가 낮은 최소층(평균 $73.26{\mu}M$)은 산소 결핍 환경(dysoxic<$90{\mu}M$)으로 연구 해역 전반에 걸쳐 수심 700~1,200 m 사이에 분포하였다. 아질산염+질산염과 인산염으로 대표되는 무기영양염은 표면혼합층 내에서 빈영양 환경을 보인 후 수심 증가에 따라 점차적으로 증가해 용존산소 최소층에서 최대 농도를 나타냈으며, N:P ratio(13.7) 결과로부터 연구 해역은 식물플랑크톤이 성장하기에 질소 성분이 제한된 환경으로 파악되었다. 해저산을 중심으로 동-서 및 남-북 정점 라인에서 환경 인자의 수직 분포는 서쪽과 남쪽 해역에서 저층수 유입에 의한 영향으로 수심 500 m 부근에서 그리고 수심 2,500 m 이하의 저층 내에서도 서쪽 해역과 남쪽 해역에서 반대 해역과 비교해 환경 인자의 농도가 다르게 분포하였다. Redfield ratio(N:P=16:1)을 이용하여 구해진 Excess N 값은 연구 해역 전반에 걸쳐 음의 값을 보여 질소 제거 기작이 우세한 환경임을 나타냈으며, 서쪽 해역과 남쪽 해역 저층에서 상대적으로 높은 값이 관측되었다. 이러한 결과들은 해저산의 지형적인 특성이 저층 해류 순환에 영향을 미치고 이는 수층 환경 인자들의 거동을 결정하는데 중요하게 작용함을 지시한다.

Keywords

References

  1. Anderson, G.C., 1969, "Subsurface chlorophyll maximum in the Northeast Pacific Ocean", Limnol. Oceanogr., Vol. 14, No. 3, 386-391. https://doi.org/10.4319/lo.1969.14.3.0386
  2. Anderson, L.A. and Sarmiento, J.L., 1994, "Redfield ratios of remineralization determined by nutrient data analysis", Global Biogeochem. Cycles, Vol. 8, 65-80. https://doi.org/10.1029/93GB03318
  3. Capone, D.G., Zehr, J.P., Paerl, H.W., Bergman, B. and Carpenter, E.J., 1997, "Trichodesmium, a globally significant marine cyanobacterium", Science, Vol. 276, 1221-1229. https://doi.org/10.1126/science.276.5316.1221
  4. Cavender-Bares, K.K., Karl, D.M. and Chisholm, S.W., 2001, "Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean", Deep-Sea Res. I, Vol. 48, No. 11, 2373-2395. https://doi.org/10.1016/S0967-0637(01)00027-9
  5. Chaohui, S., Jianping, X., Zenghong, L., Mingrong, T. and Bokang, Z., 2008, "Application of argo data in the analysis of water masses in the Northwest Pacific Ocean", Mar. Sci. Bull., Vol. 10, No. 2, 1-13.
  6. Conrad, T.A. and Hein, J.R., 2013, Water depth-composition trends in ferromanganese crusts adjacent to the California margin compared to those in equatorial Pacific crusts. American Geophysical Union, Fall Meeting 2013, abstract OS11D-1671.
  7. Cronin, M.F. and Kessler, W.S., 2002, "Seasonal and interannual modulation of mixed layer variability at $0^{\circ}$, $110^{\circ}W$", Deep-Sea Res. I, Vol. 49, 1-17. https://doi.org/10.1016/S0967-0637(01)00043-7
  8. Dower, J., Freeland, H., Juniper, K., 1992, "A strong biological response to oceanic flow past Cobb Seamount", Deep-Sea Res., Vol. 39, 1139-1145. https://doi.org/10.1016/0198-0149(92)90061-W
  9. Falkowski, P.G., 1997, "Evolution of the nitrogen cycle and its influence on the biological sequestration of $CO_2$ in the ocean", Nature, Vol. 387, 272-275. https://doi.org/10.1038/387272a0
  10. Freeland, H., 1994, "Ocean circulation at Cobb seamount", Deep-Sea Res. I, Vol. 41, 1715-1732. https://doi.org/10.1016/0967-0637(94)90069-8
  11. Furuya, K., Odate, T. and Taguchi, K., 1995, Effects of a seamount on phytoplankton production in the western Pacific Ocean. In: H. Sakai and Y. Nozaki(eds), Biogeochemical processes and ocean flux in the western Pacific. Terra Scientific Publishing Company, 255-273.
  12. Genin, A. and Dower, J.F., 2007, Seamount plankton dynamics. In: T.J. Pitcher(ed), Seamount ecology: Ecology, conservation and management. Fish and Aquatic Resources Series 12. Oxford, 85-100.
  13. Glasby, G.P., Mountain, B., Vineesh, T.C., Banakar, V., Rajani, R. and Ren, X., 2010, "Role of hydrology in the formation of Co-rich Mn crust from the Equatorial N Pacific, Equatorial S Indian and the NE Atlantic Ocean", Resource Geol., Vol. 60, No. 2, 165-177. https://doi.org/10.1111/j.1751-3928.2010.00123.x
  14. Gruber, N. and Sarmiento, J.L., 1997, "Global patterns of marine nitrogen fixation and denitrification", Global Biogeochem. Cycles, Vol. 11, No. 2, 235-266. https://doi.org/10.1029/97GB00077
  15. Hansell, D.A., Bates, N.R. and Olson, D.B., 2004, "Excess nitrate and nitrogen fixation in the North Atlantic Ocean", Mar. Chem., Vol. 84, 243-265. https://doi.org/10.1016/j.marchem.2003.08.004
  16. Hein, J.R. and Koschinsky, A., 2014, Deep-ocean ferromanganese crusts and nodule. Treatise on Geochemistry (2nd ed), Elsevier, 273-291.
  17. Hein, J.R., Koschinsky, A., Bau, M., Manheim, F.T., Kang, J.K. and Roberts, L., 2000, Cobalt-rich ferromanganese crusts in the Pacific, In: D.S. Cronan(ed), Handbook of marine mineral deposits. CRC Press, London, 239-279.
  18. Hein, J.R., Mizell, K., Koschinsky, A. and Conrad, T.A., 2013, "Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with landbased resources", Ore Geol. Rev., Vol. 51, 1-14. https://doi.org/10.1016/j.oregeorev.2012.12.001
  19. Hirose, K. and Kamiya, H., 2003, "Vertical nutrient distributions in the Western North Pacific Ocean: Simple model for estimating nutrient upwelling, export flux and consumption rates", J. Oceangr., Vol. 59, 149-161. https://doi.org/10.1023/A:1025535003841
  20. Huppert, H.E., 1975. "Some remarks on the initiation of internal Taylor Columns", J. Fluid Mech., Vol. 67, 397-412. https://doi.org/10.1017/S0022112075000377
  21. Kawabe, M., Fujio, S. and Yanagimoto, D., 2003, "Deep-water circulation at low latitude in the western North Pacific", Deep-Sea Res. I, Vol. 50, 631-656. https://doi.org/10.1016/S0967-0637(03)00040-2
  22. Kim, E., Jeon, D., Shin, C.W. and Kim, D.G., 2014a, "Variation of the southern subtropical countercurrent related to sea surface height and eddies in the Northwest Tropical Pacific", Ocean Sci. J., Vol. 49, No. 1, 35-46. https://doi.org/10.1007/s12601-014-0005-x
  23. Kim, H.J., Hyeong, K., Park, J.Y., Jeong, J.H., Jeon, D., Kim, E. and Kim, D., 2014b, "Influence of Asian monsoon and ENSO events on particle fluxes in the western suntropical Pacific", Dee-Sea Res. I, Vol. 90, 139-151. https://doi.org/10.1016/j.dsr.2014.05.002
  24. Kim, I.N., Lee, K., Gruber, N., Karl, D.M., Bullister, J.L., Yang, S. and Kim, T.W., 2014c, "Increasing anthropogenic nitrogen in the North Pacific Ocean", Science, Vol. 346, No. 6213, 1102-1106. https://doi.org/10.1126/science.1258396
  25. Kim, J., Ko, Y.T., Hyeong, K. and Moon, J.W., 2013, "Geophysical and geological exploration of cobalt-rich ferromanganese crists on a seamount in the Western Pacific", Econ. Environ. Geol., Vol. 46, No. 6, 569-580 (in Korean). https://doi.org/10.9719/EEG.2013.46.6.569
  26. Kim, T.H. and Kim, G., 2013, "Changes in seawater N:P ratios in the northwestern Pacific Ocean in response to increasing atmospheric N deposition: Results from the East (Japan) Sea", Limnol. Oceanogr., Vol. 56, No. 6, 1907-1914.
  27. Kiriakoulakis, K., Vilas, J.C., Blackbird, S.J., Aristegui, J. and Wolff, G.A., 2009, "Seamounts and organic matter-Is there an effect? The case of Sedlo and Seine seamounts, Part 2. Composition of suspended particulate organic matter", Deep-Sea Res. II, Vol. 56, 2631-2645. https://doi.org/10.1016/j.dsr2.2008.12.024
  28. Klinkhammer, G.P. and Bender, M.L., 1980, "The distribution of manganese in the Pacific Ocean", Ear. Plan. Sci. Lett., Vol. 46, 361-384. https://doi.org/10.1016/0012-821X(80)90051-5
  29. Lee, T.G., Hein, J.R., Lee, K., Moon, J.W. and Ko, Y.T., 2005, "Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using chirp (3-7 kHz) subbottom profiles", Deep-Sea Res. I, Vol. 52, 1932-1956. https://doi.org/10.1016/j.dsr.2005.04.009
  30. Machin, F., Pelegri, J.L., Emelianov, M., Isern-Fontanet, J., White, M., Bashmachnikov, I. and Mohn, C., 2009, "Mass and nutrient fluxes around Sedlo seamount", Deep-Sea Res. II, Vol. 56, 2606-2617. https://doi.org/10.1016/j.dsr2.2008.12.038
  31. Michaels, A.F., Karl, D.M. and Capone, D.G., 2001, "Elemental stoichiometry, new production, and nitrogen fixation", Oceangr., Vol. 14, No. 4, 68-77. https://doi.org/10.5670/oceanog.2001.08
  32. Millero, F.J., 2006, Chemical oceanography (3rd ed), CRC Press, 266-277.
  33. MLTM (Ministry of Land, Transportation and Marine Affairs), 1998, The report of dee sea mineral resources development, Korea Ocean Research and Development Institute, Ansan, p917 (in Korean).
  34. Mohn, C., White, M., Bashmachnikov, I., Jose, F. and Pelegri, J.L., 2009, "Dynamics at an elongated, intermediate depth seamount in the North Atlantic (Sedlo Seamount, $40^{\circ}20'N,\;26^{\circ}40'W$)", Deep-Sea Res. II, Vol. 56, 2582-2592. https://doi.org/10.1016/j.dsr2.2008.12.037
  35. Muinos, S.B., Hein, J.R., Frank, M., Monteiro, J.H., Gaspar, L., Conrad, T., Pereira, H.G. and Abrantes, F., 2013, "Deep-sea Fe-Mn crusts from the Northeast Atlantic Ocean: Composition and resource considerations", Mar. Geores. Geotech., Vol. 31, No. 1, 40-70. https://doi.org/10.1080/1064119X.2012.661215
  36. Owens, W.B. and Hogg, N.G., 1980, "Oceanic observations of stratified Taylor columns near a bump", Dee-Sea Res., Vol. 27, 1029-1045. https://doi.org/10.1016/0198-0149(80)90063-1
  37. Parsons, T.R., Maita, Y. and Lalli, C.M., 1984, A manual of chemical and biological methods for seawater analysis, Pergamon Press, p173.
  38. Paulmier, A. and Ruiz-Pino, D., 2009, "Oxygen minimum zones (OMZs) in the modern ocean", Prog. Oceanogr., Vol. 80, 113-128. https://doi.org/10.1016/j.pocean.2008.08.001
  39. Qui, B., 2001, Kuroshio and Oyashio currents. In: J.H. Steele (ed), Encyclopedia of ocean sciences, Academic Press, New York, 1413-1425.
  40. Redfield, A.C., Ketchum, B.H. and Richards, F.A., 1963, The influence of organisms on the composition of sea-water. In: M.N. Hill (ed), The Sea. Vol. 2, Wiley, New York, 26-77.
  41. Rousseaux, C.S. and Gregg, W.W., 2014, "Interannual variation in phytoplankton primary production at a global scale", Remote Sens., Vol. 6, 1-19.
  42. Samuelsen, A., Hjollo, S.S., Johannessen, J.A. and Patel, R., 2012, "Particle aggregation at the edges of anticyclonic eddies and implications for distribution of biomass", Ocean Sci., Vol. 8, 389-400. https://doi.org/10.5194/os-8-389-2012
  43. Sardans, J., Rivas-Ubach, A. and Penuelas, J., 2012, "The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives", Biogeochemistry, Vol. 111, 1-39. https://doi.org/10.1007/s10533-011-9640-9
  44. Siedler, G., Holfort, J., Zenk, W., Muller, T.J. and Csernok, T., 2004. "Deep-water flow in the Mariana and Caroline basins", J. Physic. Oceanogr., Vol. 34, 566-581. https://doi.org/10.1175/2511.1
  45. Somes, C.J., Schmittner, A., Galbraith, E.D., Lehmann, M.F., Altabet, M.A., Montoya, J.P., etelier, R.M., Mix, A.C., Bourbonnais, A. and Eby, M., 2010, "Simulating the global distribution of nitrogen isotopes in the ocean", Global Biogeochem. Cycles, Vol. 24, No. G4019, 1-16.
  46. Son, J.W., Kim, K.H., Kim, M.J., Son, S.K. and Chi, S.B., 2011, "Distribution and inter-annual variation of nutrients (N, P, Si) and organic carbon (DOC, POC) in the Equatorial thermocline ridge, Northeast Pacific", Ocean and Polar Res., Vol. 33, No. 1, 55-68 (in Korean) https://doi.org/10.4217/OPR.2011.33.1.055
  47. SPC (Secretariat of the Pacific Community), 2013, Deep sea minerals: Cobalt-rich ferromanganese crusts, a physical, biological, environmental, and technical review, In: E. Baker and Y. Beaudoin (eds), Vol. 1C.
  48. Stommel, H. and Yoshida, K., 1972, Kuroshio, University of Tokyo Press, pp. 95-127.
  49. Talley, L.D., 1991, "An Okhotsk Sea-water anomaly-implications for ventilation in the North Pacific", Deep-Sea Res. I, Vol. 38, 171-190. https://doi.org/10.1016/S0198-0149(12)80009-4
  50. Talley, L.D., 2007, Hydrographic atlas of the world ocean circulation experiment (WOCE). Volume 2: Pacific Ocean, International WOCE Project Office, Southampton, UK, ISBN 0- 904175-54-5.
  51. Taylor, G.I., 1923. Experiments on the motion of solid bodies in rotating fluids. Proceedings of the Royal Society, London A 104, 213-218. https://doi.org/10.1098/rspa.1923.0103
  52. Venrick, E.L., McGowan, J.A. and Mantyla, A.W., 1973, "Deep chlorophyll maxima in the oceanic Pacific", Fish Bull., Vol. 71, 41-52.
  53. Verlaan, P.A., Cronan, D.S. and Morgan, C.L., 2004, "A comparative analysis of compositional variations in and between marine ferromanganese nodules and crusts in the South Pacific and their environmental controls", Prog. Oceanogr., Vol. 63, 125-158. https://doi.org/10.1016/j.pocean.2004.11.001
  54. Vilas, J.C., Aristegui, J., Kiriakoulakis, K., Wolff, G.A., Espino, M., Polo, I., Montero, M.F. and Mendonca, A., 2009, "Seamounts and organic matter-Is there an effect? THe case of Sedlo and Seine seamounts: Part 1. Distribution of dissolved and particulate organic matter", Deep-Sea Res. II, Vol. 56, 2618-2630. https://doi.org/10.1016/j.dsr2.2008.12.023
  55. Wijffels, S.E., Hall, M.M., Joyce, T., Torres, D., Hacker, P. and Firing, E., 1998, "Multiple deep gyres of the western North Pacific: A WOCE section along 149E", J. Geophy. Res., Vol. 103, No. C6, 12985-13009. https://doi.org/10.1029/98JC01016
  56. Wright, J.J., Konwar, K.M. and Hallam, S.J., 2012, "Microbial ecology of expanding oxygen minimum zones", Nature Rev., Vol. 10, 381-394.
  57. Yasuda, I., 1997, "The origin of the North Pacific Intermediate Water", J. Geophys. Res., Vol. 102, No. C1, 893-909. https://doi.org/10.1029/96JC02938