DOI QR코드

DOI QR Code

Antioxidant and Tyrosinase Inhibitory Activities of Dicaffeoylquinic Acid Derivatives Isolated from Gnaphalium Affine D. DON

떡쑥 추출물로부터 분리된 Dicaffeoylquinic Acid 유도체들의 항산화 및 타이로시네이즈 저해 활성

  • Im, Na Ri (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Hae Soo (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Ha, Ji Hoon (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Noh, Geun Young (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 임나리 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 김해수 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 하지훈 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 노근영 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소)
  • Received : 2015.05.07
  • Accepted : 2015.06.18
  • Published : 2015.08.10

Abstract

In this study, three dicaffeoylquinic acids (DCQAs) isolated from Gnaphalium affine D. DON. extracts were structurally identified and evaluated for their antioxidant activities, cellular protective effects, and tyrosinase inhibitory activities. The ethyl acetate fraction of G. affine was chromatographed, which yielded 3 DCQA derivatives of 1-3 : 3,5-dicaffoylquinic acid (3,5-DCQA, 1), 4,5-dicaffeoylquinic acid (4,5-DCQA, 2), 1,5-dicaffoylquinic acid (1,5-DCQA, 3). The structure of each compounds was determined using $^1H$ NMR and MS analyses. Compounds of 1-3 showed strong free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}=3.70$, 5.80, and $5.50{\mu}M$, respectively) compared to those of a commonly used lipophilic antioxidant, (+)-${\alpha}$-tocopherol ($21.90{\mu}M$). Cellular protective effects of 1-3 compounds on the $^1O_2$ sensitized photohemolysis of human erythrocytes were similar to (+)-${\alpha}$-tocopherol. 1-3 compounds also exhibited higher tyrosinase inhibitory effects ($IC_{50}=0.15$, 0.16, and 0.13 mM) compared to arbutin (0.33 mM), known as a skin-whitening agent. These results indicate that three DCQA derivatives may be applied as an antioxidant and a skin whitening agent in food or cosmetic industries.

본 연구에서는 떡쑥 추출물로부터 3가지 dicaffeoylquinic acid (DCQA)를 분리 정제하여 구조를 결정하고, 항산화 활성, 세포보호효과, 그리고 tyrosinase 저해 활성을 평가하였다. 떡쑥 추출물의 에틸아세테이트 분획에 대하여 크로마토그래피, $^1H$-NMR 및 MS 분석을 한 결과, 분리된 화합물은 총 3가지 DCQA 유도체 : 3,5-dicaffoylquinic acid (3,5-DCQA, 1), 4,5-dicaffeoylquinic acid (4,5-DCQA, 2), 1,5-dicaffoylquinic acid (1,5-DCQA, 3)로 나타났다. 분리된 compound 1-3의 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical 소거활성($FSC_{50}$)은 각각 3.70, 5.80 및 $5.50{\mu}M$로 지용성 항산화제로 알려진 (+)-${\alpha}$-tocopherol ($FSC_{50}=21.90{\mu}M$)과 비교하여 더 큰 free radical 소거활성을 나타내었다. compound 1-3의 $^1O_2$로 유도된 사람 적혈구의 광용혈에 대한 세포보호효과는 (+)-${\alpha}$-tocopherol과 유사한 세포보호활성을 나타내었다. Compound 1-3의 tyrosinase 저해활성($IC_{50}$)은 각각 0.15, 0.16, 및 0.13 mM로 미백성분으로 알려진 arbutin ($IC_{50}=0.33mM$)과 비교하여 높은 tyrosinase 억제효과를 나타내었다. 이상의 결과들은 세 가지 DCQA가 식품 또는 화장품 산업에서 항산화 및 미백 기능성 소재로서 응용가능성이 있음을 시사한다.

Keywords

References

  1. S. B. Han, H. A. Gu, S. J. Kim, H. J. Kim, S. S. Kwon, and H. S. Kim, Comparative study on antioxidative activity of Glycyrrhiza uralensis and Glycyrrhiza glabra extracts by country of origin, J. Soc. Cosmet. Scientists Korea, 39, 1-8 (2013). https://doi.org/10.15230/SCSK.2013.39.1.001
  2. S. Pillai, C. Oresajo, and J. Hayward, Ultraviolet radication and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review, Int. J. Cosmet. Science, 27, 17-34 (2005). https://doi.org/10.1111/j.1467-2494.2004.00241.x
  3. G. E. Rhie, M. H. Shin, J. Y. Seo, W. W. Choi, K. H. Cho, and K. H. Kim, Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo, J. Invest. Dermatol., 117, 1212-1217 (2011).
  4. V. Afonso, R. Champy, D. Mitrovic, P. I. Collin, and A. Lomri, Reactive oxygen species and superoxide dismutases Role in joint diseases, Joint Bone Spine., 74, 324-329 (2007). https://doi.org/10.1016/j.jbspin.2007.02.002
  5. M. J. Davies, Reactive oxygen species, metalloproteinases, and plaque stability, Amer. Heart J., 23, 2382-2383 (1998).
  6. D. Bagchi D, M. Bagchi, E. A. Hassoun, and S. J. Stohs, In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides, Toxicology, 104, 129-140 (1995). https://doi.org/10.1016/0300-483X(95)03156-A
  7. S. B. Berman and T. Hastings, Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species, J. Neurochem., 69, 1185-1195 (1997).
  8. J. Yamakoshi, F. Otsuka, A. Sano, S. Tokutake, M. Saito, and M. Kikuchi, Lightening effect on ultraviolet-induced pigmentation of guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds, Pig. Cell Res., 16, 629-638 (2003). https://doi.org/10.1046/j.1600-0749.2003.00093.x
  9. S. M. Park, S. Y Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18, 680-683 (2012). https://doi.org/10.1016/j.jiec.2011.11.126
  10. N. R. Jo, H. A. Gu, S. A. Park, S. B. Han, and S. N. Park, Cellular protective effect and liposome formulation for enhanced transdermal delivery of isoquercitrin, J. Soc. Cosmet. Scientists Korea, 38, 103-118 (2012). https://doi.org/10.15230/SCSK.2012.38.2.103
  11. M. Iwata M, T. Corn, S. Iwata, M. A. Everett, and B. B. Fuller, The relationship between tyrosinase activity and skin color in human foreskins, J. Invest. Dermatol., 95, 9-15 (1990). https://doi.org/10.1111/1523-1747.ep12872677
  12. K. Kameyama, T. Takemura, Y. Hamada, C. Sakai, S. Kondoh, and S. Nishi-yama, Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase-related protein 1 (TRP), dopachrome tautomerase (TRP 2) and a melanogenic inhibitor, J. Invest. Dermatol., 100, 126-132 (1993). https://doi.org/10.1111/1523-1747.ep12462778
  13. J. C. Cho, H. S. Rho, Y. H. Joo, S. M. Ahn, D. H. Won, S. S. Shin, Y. H. Park, K. D. Suh, and S. N. Park, The depigmenting activities of hydroxyl carboxamide derivatives containing hydrophobic moiety, Bull. Korean Chem. Soc., 33, 1333-1336 (2012). https://doi.org/10.5012/bkcs.2012.33.4.1333
  14. Y. J. Kima and H. Uyama, Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future, CMLS, Cell. Mol. Life Sci., 62, 1707-11723 (2005). https://doi.org/10.1007/s00018-005-5054-y
  15. Z. Xi, W. Chen, Z. Wu, Y. Wang, P. Zeng, G. Zhao, X. Li, and L. Sun, Anti-complementary activity of flavonoids from Gnaphalium affine D. Don, Food Chem., 130, 165-170 (2012). https://doi.org/10.1016/j.foodchem.2011.07.025
  16. H. S. Kim, N. R. Im, J. H. Park, M. O. Kim, and S. N. Park, Antioxidative Effect and Active Component Analysis of Gnaphalium affine D. DON. Extraxts, J. Soc. Cosmet. Scientists Korea, 40, 11-20 (2014). https://doi.org/10.15230/SCSK.2014.40.1.11
  17. J. Li, D. Huang, W. Chen, Z. Xi, C. Chen, G. Huang, and L. Sun, Two New Phenolic Glycosides from Gnaphalium affine D. Don and Their Anti-Complementary Activity, Molecules, 18, 7751-7760 (2013). https://doi.org/10.3390/molecules18077751
  18. M. Aritomi and T. Kawasaki, Dehydro-para-asebotin, a new chalconeglucoside in the flowers of Gnaphalium affine D. Don., Chem. Pharm. Bull., 22, 1800-1805 (1974). https://doi.org/10.1248/cpb.22.1800
  19. M. Aritomi, M. Shimojoe, and T. Mazaki Aritomi, Chemical Constituents in Flowers of Gnaphalium affine D. Don., Yakugaku Zasshi., 84, 895-896 (1964). https://doi.org/10.1248/yakushi1947.84.9_895
  20. M. Morimoto, S. Kumeda, and K. Komai, Insect antifeedant flavonoids from Gnaphalium affine D. Don., J. Agric. Food Chem., 48, 1888-1891 (2000). https://doi.org/10.1021/jf990282q
  21. A. N. Shikova, M. Kundracikovac, T. L. Palama, O. N. Pozharitskaya, V. M. Kosman, V. G. Makarov, B. Galambosi, H. J. Kim, Y. P Jang, Y. H. Choi, and R. Verpoorte, phenolic constituents of Gnaphalium uliginosum L., Phytochemistry, 3, 45-47 (2010). https://doi.org/10.1016/j.phytol.2009.11.002
  22. Y. Aoshima, Y. Hasegawa, S. Hasegawa, A. Nagasaka, T. Kimura, S. Hashimoto, Y. Torii, and N. Tsukagoshi, Isolation of GnafC, a polysaccharide constituent of Gnaphalium affine, and synergistic effects of GnafC and ascorbate on the phenotypic expression of osteoblastic MC3T3-E1 cells, Bios. Biotechnol. Biochem., 67, 2068-2074 (2003). https://doi.org/10.1271/bbb.67.2068
  23. W. C. Zeng, R. X. Zhu, L. R. Jia, H. Gao, and Y. Zheng, Chemical composition, antimicrobial and antioxidant activities of essential oil from Gnaphlium affine, Food Chem. Toxicol., 49, 1322-1328 (2011). https://doi.org/10.1016/j.fct.2011.03.014
  24. T. L. Meragelman, G. L. Silva, E. Mongelli, and R. R. Gil, ent-Pimarane type diterpenes from Gnaphalium gaudichaudianum, Phytochemistry., 62, 569-572 (2003). https://doi.org/10.1016/S0031-9422(02)00611-8
  25. A. Urza, R. Torres, C. Bueno, and L. Mend, Flavonoids and diterpenoids in the trichome resinous exudate from Pseudognaphalium cheiranthifolium, P. heterotrichium and P. vira vira, Biochem. Syst. Ecol., 23, 459 (1995). https://doi.org/10.1016/0305-1978(95)00025-P
  26. Z. Xi, W. Chen, Z. Wu, Y. Wang, P. Zeng, G. Zhao, X. Li, and L. Sun, Chemical constituents of petroleum ether fractions of Gnaphalium affine D. Don. Acad. J. Sec. Mil. Med. Univ., 32, 311-313 (2011).
  27. T. Hatano, H. Kagawa, T. Yasuhara, and T. Okuda, Two New Flavonoids and Other Constituents in Licorice Root: Their Relative Astringency and Radical Scavenging Effects. Chem. Pharm. Bull., 36, 2090-2097 (1988). https://doi.org/10.1248/cpb.36.2090
  28. S. N. Park, D. H. Won, J. P. Hwang, and S. B. Han, Cellular protective effects of dehydroeffusol isolated from Juncus effusus L. and the mechanisms underlying these effects, J. Ind. Eng. Chem., 20, 3046-3052 (2014). https://doi.org/10.1016/j.jiec.2013.11.041
  29. A. Vanni, D. Gastaldi, and G. Giunta, Kinetic investigations on the double enzymic activity of the tyrosinase mushroom, Annali di Chimica., 80, 1-2 (1990).
  30. A. Tolonen, T. Joutsamo, S. Mattlla, T. Kamarainen, and Jalonen J, Identification of isomeric dicaffeoylquinic acids from Eleutherococcus senticosus using HPLC-ESI/TOF/MS and $^1H$ NMR methods, Phytochem. Anal., 13, 316-328 (2002). https://doi.org/10.1002/pca.663
  31. M. N. Clifford, S. Knight, and N. Kuhnert, Discriminating between the six isomers of dicaffeoylquinic acid by $LC-MS^n, J. Agric. Food Chem., 53, 3821-3832 (2005). https://doi.org/10.1021/jf050046h
  32. R. Gu, G. Dou, J. Wang, J. Dong, and Z. Meng, Simultaneous determination of 1,5-dicaffeoylquinic acid and its active metabolites in human plasma by liquid chromatography-tandem mass spectrometry for pharmacokinetic studies, J. Chromatogr. B., 852, 85-91 (2007). https://doi.org/10.1016/j.jchromb.2006.12.055
  33. I. Parejo, F. Viladomat, J. Bastida, G. Schmeda-Hirschmann, J. Burillo, and Codina C, Bioguided isolation and identification of the nonvolatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) waste, J. Agric. Food Chem., 52, 1890-1897 (2004). https://doi.org/10.1021/jf030717g
  34. N. R. Jo, S. A. Park, S. H. Jeon, J. H. Ha, and S. N. Park, Cellular Protective Effects and Antioxidative Activity of Resveratrol, Appl. Chem. Eng., 24, 483-488 (2013).

Cited by

  1. Extraction of Active Ingredient from Angelica Using Microwave Energy vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1032
  2. Isolation of 4,5- O -Dicaffeoylquinic Acid as a Pigmentation Inhibitor Occurring in Artemisia capillaris Thunberg and Its Validation In Vivo vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/7823541
  3. 중심합성계획모델을 이용한 밀싹으로부터 플라보노이드성분의 추출공정 최적화 vol.29, pp.4, 2015, https://doi.org/10.14478/ace.2018.1027