References
- H. Burlington and V. F. Lindeman, Effect of DDT on testes and secondary sex characteristics of white leghorn cockerels, Proc. Soc. Exp. Biol. Med., 74, 48-51 (1950). https://doi.org/10.3181/00379727-74-17805
- J. Bitman, H. C. Cecil, S. J. Harris, and V. J. Feil, Estrogenic activity of o,p'-DDT metabolitus and related compounds, J. Agric. Food Chem., 162, 149-151 (1978).
- R. L. Carlson, Silent Spring, 173-297, Penguin Books, London (1962).
- A. L. Herbst, H. Ulfelder, and D. C. Poskanzer, Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women, N. Engl. J. Med., 284, 878-881 (1971). https://doi.org/10.1056/NEJM197104222841604
- W. B. Gill, G. F. Schumacher, and M. Bibbo, Structural and functional abnormalities in the sex organs of male offspring of mothers treated with diethylstilbestrol (DES), J. Reprod. Med., 16, 147-153 (1976).
- E. Carlsen, A. Giwercman, N. Keiding, and N. E. Skakkebaek, Evidence for decreasing quality of semen during past 50 years, Brit. Med. J., 305, 609-613 (1992). https://doi.org/10.1136/bmj.305.6854.609
- R. M. Sharpe and N. E. Skakkebaek, Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract?, Lancet, 341, 1392-1395 (1993). https://doi.org/10.1016/0140-6736(93)90953-E
- T. Colborn, F. S. Saal, and A. M. Soto, Developmental effects of endocrine-disrupting chemicals in wildlife and humans, Environmental Health Perspectives, 101, 378-384 (1993). https://doi.org/10.1289/ehp.93101378
- J. K. Fawell and J. K. Chipman, Potential endocrine disrupting substances from materials in contact with drinking water, J. Chart Inst. Water Environ. Mange., 15, 92-96 (2001). https://doi.org/10.1111/j.1747-6593.2001.tb00312.x
- Y. K. Ham, S. J. Oh, and S. W. Kim, Monitoring of bisphenol A and nonylphenol in waterworks system of Seoul, Korea, Analytical Science & Technology, 17, 423-433 (2004).
- H. J. Kim, S. J. Cho, Y. S. Park, and I. H. Ye, A research of endocrine disruptors in the korea environment (1999-2007), Report of S.I.H.E., 43, 376-386 (2007).
- H. C. Alexander, D. C. Dill, L. A. Smith, P. D. Guiney, and P. B. Dorn, Bisphenol A: acute aquatic toxicity, Environ. Toxicol. Chem., 7, 19-26 (1988). https://doi.org/10.1002/etc.5620070104
- H. J. Son, D. C. Ryu, Y. U. Kim, K. K. Cho, and S. Y. Kim, Photocatalytic degradation of bisphenol A us a rotating photocatalytic-oxidation drum reactor, HWAHAK KONGHAK, 39, 493-500 (2001).
-
J. Weiss, Investigation on the radical
$HO_2$ . in solution, Trans Faraday Soc., 31, 668-681 (1935). https://doi.org/10.1039/tf9353100668 -
R. E. Buehler, J. Staehelin, and J. Hoigne, Ozone decomposition in water studied by pulse radiolysis. 1.
$HO_2/O_2\;^-$ and$HO_3/O_3\;^-$ as intermediates, J. Phys. Chem., 88, 2560-2564 (1984). https://doi.org/10.1021/j150656a026 -
J. Staehelin, R. E. Buehler, and J. Hoigne, Ozone decomposition in water studied by pulse radiolysis. 2. OH and
$HO_4$ as chain intermediates, J. Phys. Chem., 88, 5999-6004 (1984). https://doi.org/10.1021/j150668a051 - S. J. Masten, M. J. Galbraith, and S. H. Davies, Oxidation of trichlorobenzene using advanced oxidation processes, Ozone Sci. Eng., 18, 535-548 (1996). https://doi.org/10.1080/01919512.1997.10382862
- J. Staehelln and J. Hoigne, Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions, Environ. Sci. Technol., 19, 1206-1213 (1985). https://doi.org/10.1021/es00142a012
- S. D. Chang and P. C. Singer, The impact of ozonation on particle stability and the removal of TOC and THM precursors, J. AWWA, 83, 71-79 (1991).
- M. D. Gurol and P. C. Singer, Kinetics of ozone decomposition: a dynamic approach, Environ Sci. Technol., 16, 377-383 (1982). https://doi.org/10.1021/es00101a003
- J. Staehelln and J. Hoigne, Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol., 16, 676-681 (1982). https://doi.org/10.1021/es00104a009
- R. G. Zepp, J. Hoigne, and H. Bader, Nitrate-induced photooxdation of trace organic chemicals in water, Environ. Sci. Technol., 21, 443-450 (1987). https://doi.org/10.1021/es00159a004
- R. G. Zepp, B. C. Faust, and J. Hoigne, Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-fenton reaction, Environ. Sci. Technol., 26, 313-319 (1992). https://doi.org/10.1021/es00026a011
- J. W. Choi and H. S. Lee, A study on the decomposition of dissolved ozone and phenol using ozone/activated carbon process, Appl. Chem. Eng., 23, 490-495 (2012).
- J. W. Kang, H. C. Choie, S. W. Jung, and S. I. Choie, Evaluation of the ozone/high pH and ozone/hydrogen peroxide advanced oxidation processes (II), J. of KSEE., 15, 537-547 (1993).
- J. R. Peller, S. P. Mezyk, and W. J. Cooper, Bisphenol A reactions with hydroxyl radicals: diverse pathways determined between deionized water and tertiary treated wastewater solutions, Res. Chem. Intermed., 35, 21-34 (2009). https://doi.org/10.1007/s11164-008-0012-6
- J. Hoigne and H. Bader, Rate constants of reactions of ozone with organic and inorganic compounds in water-I: non-dissociating organic compounds, Water Res., 17, 173-183 (1983). https://doi.org/10.1016/0043-1354(83)90098-2
- F. J. Beltran, J. M. Encinar, and M. A. Alonso, Nitroaromatic hydrocarbon ozonation in water. 1. single ozonation, Ind. Eng. Chem. Res., 37, 25-31 (1998). https://doi.org/10.1021/ie9704253
- C. I. Kwon, S. H. Kong, and S. R. Bae, The estimation of hydroxyl radical generation rate in ozonation, J. of KoSSGE, 6, 3-12 (2001).
- U. Muhammad, R. Felicity, F. Linhua, and A. A. Hamidi, Application of ozone for the removal of bisphenol A from water and wastewater, Chemosphere, 90, 2197-2207 (2013). https://doi.org/10.1016/j.chemosphere.2012.09.090
- M. Deborde, S. Rabouan, P. Mazellier, J. P. Duguet, and B. Legube, Oxidation of bisphenol A by ozone in aqueous solution, Water Res., 42, 4299-4308 (2008). https://doi.org/10.1016/j.watres.2008.07.015
- E. Kusvuran and D. Yildirim, Degradation of bisphenol A by ozonation and determination of degradation intermediates by GC/MS and LC/MS, Chemical Engineering J., 220, 6-14 (2013). https://doi.org/10.1016/j.cej.2013.01.064
- T. Garoma and S. Matsumoto, Ozonation of aqueous solution containing bisphenol A: effect of operational parameters, J. of Hazardous Materials, 167, 1185-1191 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.133
- L. Wang, X. Jiang, and Y. Liu, Degradation of bisphenol A and formation of hydrogen peroxide induced by glow discharge plasma in aqueous solutions, J. of Hazardous Materials, 154, 1106-1114 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.016
-
X. Zhang, Y. Ding, H. Tang, X. Han, L. Zhu, and N. Wang, Degradation of bisphenol A by hydrogen peroxide activated with
$CuFeO_2$ microparticles as a heterogeneous Fenton-like catalyst: efficiency, stability and mechanism, Chemical Engineering J., 236, 251-262 (2014). https://doi.org/10.1016/j.cej.2013.09.051 - C. Li, Z. Wang, Y. J. Yang, J. Liu, X. Mao, and Y. Zhang, Transformation of bisphenol A in water distribution systems: a pilot-scale study, Chemosphere, 125, 86-93 (2015). https://doi.org/10.1016/j.chemosphere.2014.11.047
- J. Poerschmann and U. Trommler, Pathways of advanced oxidation of phenol by Fenton's reagent-dentification of oxidative coupling intermediates by extractive acetylation, J. of Chromatography A, 1216, 5570-5579 (2009). https://doi.org/10.1016/j.chroma.2009.05.075
- J. Poerschmann, U. Trommler, and T. Gorecki, Aromatic intermediate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric fenton reaction, Chemosphere, 79, 975-986 (2010). https://doi.org/10.1016/j.chemosphere.2010.03.030
Cited by
- Improvement of Gas Dissolution Rate using Air Atomizing Nozzle vol.27, pp.3, 2018, https://doi.org/10.5322/JESI.2018.27.3.219
- 오존/촉매 산화공정에서 비스페놀 A의 분해와 생성된 과산화수소의 농도 비교 vol.28, pp.6, 2017, https://doi.org/10.14478/ace.2017.1082