DOI QR코드

DOI QR Code

Decomposition Characteristics of Bisphenol A by a Catalytic Ozonation Process

오존촉매산화공정에 의한 비스페놀 A의 분해특성

  • Choi, Jae Won (School of Chemical Engineering, University of Ulsan) ;
  • Lee, Hak Sung (School of Chemical Engineering, University of Ulsan)
  • Received : 2015.05.05
  • Accepted : 2015.07.01
  • Published : 2015.08.10

Abstract

Bisphenol A (BPA) in aqueous solution was measured using HPLC technique, which was established by acetonitrile analysis and KDP solution analysis methods. In these experiments the decomposition characteristics of BPA were compared using the ozone alone, ozone/pH 10, and ozone/hydrogen peroxide processes. About 70% of 10 mg/L of BPA was removed during 60 min by the ozone alone process, while 10 mg/L of BPA was completely removed by the ozone/pH 10 and ozone/hydrogen peroxide processes in 40 min and 60 min, respectively. The final decomposition efficiency drawn from results of TOC and HPLC analyses showed that the ozone/hydrogen peroxide process was the best among them, whereas the concentrations of TOC and reaction intermediates when using the ozone/pH 10 process were higher than those of the ozone alone process after 60 min of reaction. The ozone/hydrogen peroxide process was the most efficient among them when oxidizing organic carbons in water to $CO_2$ and $H_2O$.

수용액상의 비스페놀 A (BPA)를 HPLC 분석기기를 이용하여 검량하였으며, 이것을 Acetonitrile 분석법과 KDP solution 분석법으로 정립하였다. 본 실험에서는 오존 단독공정과 오존/pH 10 공정, 오존/과산화수소 공정을 이용하여 BPA의 분해특성을 비교 고찰하였다. 오존 단독공정을 사용하였을 때, 10 mg/L BPA는 60 min 동안 약 70% 제거되었으며, 오존/pH 10 공정 및 오존/과산화수소 공정은 각각 40 min과 60 min만에 BPA를 완전히 제거하였다. 그러나 60 min 동안의 반응에서 TOC 및 HPLC 분석결과를 바탕으로 도출한 최종 분해효율은 오존/과산화수소 공정이 가장 우수한 것으로 나타났으며, 오존/pH 10 공정은 오존 단독공정에 비해 TOC 및 반응 부산물의 농도가 오히려 높은 것으로 나타났다. 수중의 유기탄소를 $CO_2$$H_2O$로 산화시키는 효율은 오존/과산화수소 공정이 가장 효과적인 것으로 나타났다.

Keywords

References

  1. H. Burlington and V. F. Lindeman, Effect of DDT on testes and secondary sex characteristics of white leghorn cockerels, Proc. Soc. Exp. Biol. Med., 74, 48-51 (1950). https://doi.org/10.3181/00379727-74-17805
  2. J. Bitman, H. C. Cecil, S. J. Harris, and V. J. Feil, Estrogenic activity of o,p'-DDT metabolitus and related compounds, J. Agric. Food Chem., 162, 149-151 (1978).
  3. R. L. Carlson, Silent Spring, 173-297, Penguin Books, London (1962).
  4. A. L. Herbst, H. Ulfelder, and D. C. Poskanzer, Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women, N. Engl. J. Med., 284, 878-881 (1971). https://doi.org/10.1056/NEJM197104222841604
  5. W. B. Gill, G. F. Schumacher, and M. Bibbo, Structural and functional abnormalities in the sex organs of male offspring of mothers treated with diethylstilbestrol (DES), J. Reprod. Med., 16, 147-153 (1976).
  6. E. Carlsen, A. Giwercman, N. Keiding, and N. E. Skakkebaek, Evidence for decreasing quality of semen during past 50 years, Brit. Med. J., 305, 609-613 (1992). https://doi.org/10.1136/bmj.305.6854.609
  7. R. M. Sharpe and N. E. Skakkebaek, Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract?, Lancet, 341, 1392-1395 (1993). https://doi.org/10.1016/0140-6736(93)90953-E
  8. T. Colborn, F. S. Saal, and A. M. Soto, Developmental effects of endocrine-disrupting chemicals in wildlife and humans, Environmental Health Perspectives, 101, 378-384 (1993). https://doi.org/10.1289/ehp.93101378
  9. J. K. Fawell and J. K. Chipman, Potential endocrine disrupting substances from materials in contact with drinking water, J. Chart Inst. Water Environ. Mange., 15, 92-96 (2001). https://doi.org/10.1111/j.1747-6593.2001.tb00312.x
  10. Y. K. Ham, S. J. Oh, and S. W. Kim, Monitoring of bisphenol A and nonylphenol in waterworks system of Seoul, Korea, Analytical Science & Technology, 17, 423-433 (2004).
  11. H. J. Kim, S. J. Cho, Y. S. Park, and I. H. Ye, A research of endocrine disruptors in the korea environment (1999-2007), Report of S.I.H.E., 43, 376-386 (2007).
  12. H. C. Alexander, D. C. Dill, L. A. Smith, P. D. Guiney, and P. B. Dorn, Bisphenol A: acute aquatic toxicity, Environ. Toxicol. Chem., 7, 19-26 (1988). https://doi.org/10.1002/etc.5620070104
  13. H. J. Son, D. C. Ryu, Y. U. Kim, K. K. Cho, and S. Y. Kim, Photocatalytic degradation of bisphenol A us a rotating photocatalytic-oxidation drum reactor, HWAHAK KONGHAK, 39, 493-500 (2001).
  14. J. Weiss, Investigation on the radical $HO_2$. in solution, Trans Faraday Soc., 31, 668-681 (1935). https://doi.org/10.1039/tf9353100668
  15. R. E. Buehler, J. Staehelin, and J. Hoigne, Ozone decomposition in water studied by pulse radiolysis. 1. $HO_2/O_2\;^-$ and $HO_3/O_3\;^-$ as intermediates, J. Phys. Chem., 88, 2560-2564 (1984). https://doi.org/10.1021/j150656a026
  16. J. Staehelin, R. E. Buehler, and J. Hoigne, Ozone decomposition in water studied by pulse radiolysis. 2. OH and $HO_4$ as chain intermediates, J. Phys. Chem., 88, 5999-6004 (1984). https://doi.org/10.1021/j150668a051
  17. S. J. Masten, M. J. Galbraith, and S. H. Davies, Oxidation of trichlorobenzene using advanced oxidation processes, Ozone Sci. Eng., 18, 535-548 (1996). https://doi.org/10.1080/01919512.1997.10382862
  18. J. Staehelln and J. Hoigne, Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions, Environ. Sci. Technol., 19, 1206-1213 (1985). https://doi.org/10.1021/es00142a012
  19. S. D. Chang and P. C. Singer, The impact of ozonation on particle stability and the removal of TOC and THM precursors, J. AWWA, 83, 71-79 (1991).
  20. M. D. Gurol and P. C. Singer, Kinetics of ozone decomposition: a dynamic approach, Environ Sci. Technol., 16, 377-383 (1982). https://doi.org/10.1021/es00101a003
  21. J. Staehelln and J. Hoigne, Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol., 16, 676-681 (1982). https://doi.org/10.1021/es00104a009
  22. R. G. Zepp, J. Hoigne, and H. Bader, Nitrate-induced photooxdation of trace organic chemicals in water, Environ. Sci. Technol., 21, 443-450 (1987). https://doi.org/10.1021/es00159a004
  23. R. G. Zepp, B. C. Faust, and J. Hoigne, Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-fenton reaction, Environ. Sci. Technol., 26, 313-319 (1992). https://doi.org/10.1021/es00026a011
  24. J. W. Choi and H. S. Lee, A study on the decomposition of dissolved ozone and phenol using ozone/activated carbon process, Appl. Chem. Eng., 23, 490-495 (2012).
  25. J. W. Kang, H. C. Choie, S. W. Jung, and S. I. Choie, Evaluation of the ozone/high pH and ozone/hydrogen peroxide advanced oxidation processes (II), J. of KSEE., 15, 537-547 (1993).
  26. J. R. Peller, S. P. Mezyk, and W. J. Cooper, Bisphenol A reactions with hydroxyl radicals: diverse pathways determined between deionized water and tertiary treated wastewater solutions, Res. Chem. Intermed., 35, 21-34 (2009). https://doi.org/10.1007/s11164-008-0012-6
  27. J. Hoigne and H. Bader, Rate constants of reactions of ozone with organic and inorganic compounds in water-I: non-dissociating organic compounds, Water Res., 17, 173-183 (1983). https://doi.org/10.1016/0043-1354(83)90098-2
  28. F. J. Beltran, J. M. Encinar, and M. A. Alonso, Nitroaromatic hydrocarbon ozonation in water. 1. single ozonation, Ind. Eng. Chem. Res., 37, 25-31 (1998). https://doi.org/10.1021/ie9704253
  29. C. I. Kwon, S. H. Kong, and S. R. Bae, The estimation of hydroxyl radical generation rate in ozonation, J. of KoSSGE, 6, 3-12 (2001).
  30. U. Muhammad, R. Felicity, F. Linhua, and A. A. Hamidi, Application of ozone for the removal of bisphenol A from water and wastewater, Chemosphere, 90, 2197-2207 (2013). https://doi.org/10.1016/j.chemosphere.2012.09.090
  31. M. Deborde, S. Rabouan, P. Mazellier, J. P. Duguet, and B. Legube, Oxidation of bisphenol A by ozone in aqueous solution, Water Res., 42, 4299-4308 (2008). https://doi.org/10.1016/j.watres.2008.07.015
  32. E. Kusvuran and D. Yildirim, Degradation of bisphenol A by ozonation and determination of degradation intermediates by GC/MS and LC/MS, Chemical Engineering J., 220, 6-14 (2013). https://doi.org/10.1016/j.cej.2013.01.064
  33. T. Garoma and S. Matsumoto, Ozonation of aqueous solution containing bisphenol A: effect of operational parameters, J. of Hazardous Materials, 167, 1185-1191 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.133
  34. L. Wang, X. Jiang, and Y. Liu, Degradation of bisphenol A and formation of hydrogen peroxide induced by glow discharge plasma in aqueous solutions, J. of Hazardous Materials, 154, 1106-1114 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.016
  35. X. Zhang, Y. Ding, H. Tang, X. Han, L. Zhu, and N. Wang, Degradation of bisphenol A by hydrogen peroxide activated with $CuFeO_2$ microparticles as a heterogeneous Fenton-like catalyst: efficiency, stability and mechanism, Chemical Engineering J., 236, 251-262 (2014). https://doi.org/10.1016/j.cej.2013.09.051
  36. C. Li, Z. Wang, Y. J. Yang, J. Liu, X. Mao, and Y. Zhang, Transformation of bisphenol A in water distribution systems: a pilot-scale study, Chemosphere, 125, 86-93 (2015). https://doi.org/10.1016/j.chemosphere.2014.11.047
  37. J. Poerschmann and U. Trommler, Pathways of advanced oxidation of phenol by Fenton's reagent-dentification of oxidative coupling intermediates by extractive acetylation, J. of Chromatography A, 1216, 5570-5579 (2009). https://doi.org/10.1016/j.chroma.2009.05.075
  38. J. Poerschmann, U. Trommler, and T. Gorecki, Aromatic intermediate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric fenton reaction, Chemosphere, 79, 975-986 (2010). https://doi.org/10.1016/j.chemosphere.2010.03.030

Cited by

  1. Improvement of Gas Dissolution Rate using Air Atomizing Nozzle vol.27, pp.3, 2018, https://doi.org/10.5322/JESI.2018.27.3.219
  2. 오존/촉매 산화공정에서 비스페놀 A의 분해와 생성된 과산화수소의 농도 비교 vol.28, pp.6, 2017, https://doi.org/10.14478/ace.2017.1082