DOI QR코드

DOI QR Code

Stabilization and Antifungal Activity of Isolated Symbiotic Bacteria from Entomopathogenic Nematodes

곤충병원성 선충에서 분리한 공생세균의 안정화 및 항진균활성

  • Kang, Dong-Hee (Department of Biological Sciences, College of Natural Science, Keimyung University) ;
  • Kim, Hyo-Hyun (MR innovation Co., Ltd.) ;
  • Nam, Uk-Ho (MR innovation Co., Ltd.) ;
  • Kim, Hyun-Soo (Department of Biological Sciences, College of Natural Science, Keimyung University)
  • 강동희 (계명대학교 자연과학대학 생명과학과) ;
  • 김효현 ((주)엠알이노베이션) ;
  • 남욱호 ((주)엠알이노베이션) ;
  • 김현수 (계명대학교 자연과학대학 생명과학과)
  • Received : 2015.04.22
  • Accepted : 2015.06.25
  • Published : 2015.06.27

Abstract

In order to use the symbiotic bacteria from ethomophatogenic nematodes as a biological control agent for agriculture, the cultural condition for maintaining phase I and antifungal activity was investigated. Symbiotic bacteria (SB) 1 stain from nematodes were selected from the three strains isolated from entomopathogenic nematodes. The growth of the SB 1 strain in NB, TSB, TY and YS medium was higher than that of the SB 2 and SB 3 strain. The packed cell volume of the SB 1 strain was reduced in NB medium which showed radical pH change. Phase I of the SB 1 strain was maintained in TSB medium after being stored for 2 weeks at $4^{\circ}C$. Culture broth with the SB 1 strain in TSB medium for 6 days and 7 days showed antifungal activities against Rhizoctonia solani KACC 40142, Botrytis cinerea Pers. KACC 40854, and Botrytis cinerea Pers. KACC 41008. Culture broth with the SB 1 strain in TSB medium containing 100 mM L-proline for 5 days showed antifungal activities against Rhizoctonia solani KACC 40142, and Botrytis cinerea Pers. KACC 40854.

Keywords

References

  1. Jeong, H. K., C. G. Kim, and D. H. Moon (2012) Analysis of contribution of environment-friendly agricultural products to health promotion. Kor. J. Org. Agric. 20: 125-142.
  2. Huh, E. J. and J. W. Kim (2010) Consumer knowledge and attitude to spending on environment-friendly agricultural products. Kor. J. Hum. Ecol. 19: 883-896. https://doi.org/10.5934/KJHE.2010.19.5.883
  3. Kim, Y. K., S. J. Hong, H. J. Jee, C. K. Shim, J. H. Park, E. J. Han, N. H. An, S. D. Lee, and J. H. Yoo (2011) Population dynamics of effective microorganisms in microbial pesticides and environmental- friendly organic materials according to storing period and temperature. Kor. J. Pestic. Sci. 15: 55-60.
  4. Nam, H. S. (2011) Enviromentally-friendly agriculture and biotic pesticide. Appl. Chem. Eng. 14: 12-18.
  5. Park, S. J., G. H. Kim, A. H. Kim, H. T. Lee, H. W. Gwon, J. H. Kim, K. H. Lee, and H. T. Kim (2012) Controlling effect of agricultural organic materials on phytophthora blight and anthracnose in red pepper. Res. Plant Dis. 18: 1-9. https://doi.org/10.5423/RPD.2012.18.1.001
  6. Boemare, N., C. Laumond, and H. Msuleon (1996) The entomopathogenic nematode-complex: biology, life cycle and vertebrate safety. Biocontrol Sci. Technol. 6: 333-345. https://doi.org/10.1080/09583159631316
  7. Lee, D. W., D. P. Lyu, H. Y. Choo, H. H. Kim, T. W. Kweon, and B. S. Oh (2005) Feeding preference of foraging ants on insect cadavers killed by entomopathogenic nematode and symbiotic bacteria in golf courses. Kor. J. Appl. Entomol. 44: 21-30.
  8. Emelianoff, V., N. Le Brun, S. Pages, S. P. Stock, P. Tailliez, C. Moulia, and M. Sicard (2008) Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from Herault and Gard (Southern France). J. Invertebr. Pathol. 98: 211-217. https://doi.org/10.1016/j.jip.2008.01.006
  9. Seo, S. Y., S. H. Lee, Y. P. Hong, and Y. G. Kim (2012) Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78: 3816-3823. https://doi.org/10.1128/AEM.00301-12
  10. Blackburn, M. B., J. M. Domek, D. B. Gelman, and J. S. Hu (2005) The broadly insecticidal Photorhabdus luminescens toxin complex a (Tca): Activity against the Colorado potato beetle, Leptinotarsa decemlineata, and sweet potato whitefly, Bemisia tabaci. J. Insect. Sci. 32: 1-11.
  11. Ffrench-constant, R. and D. Bowent (1999) Photorhabdus toxins: Novel biological insecticides. Curr. Opin. Microbiol. 2: 284-288. https://doi.org/10.1016/S1369-5274(99)80049-6
  12. Lee, D. W., H. Y. Choo, O. J. Shin, J. S. Yun, and Y. S. Kim (2002) Damage of perennial ryegrass Latium perenne by chestnut brown chafer, Adoretus tenuimaculatus (Coleoptera: Scarabaeidae) and biological control with Korean isolate of entomopathogenic nematodes. Kor. J. Appl. Entomol. 41: 217-223.
  13. Hurlbert R. E., J. Xu, and C. L. Small (1989) Colonial and cellular polymorphism in Xenorhabdus luminescens. Appl. Envir. Microbiol. 55: 1136-1143.
  14. Kim, J. Y. and S. H. Park (2002) Characterization of symbiotic bacteria from entomopathogenic nematode. Kor. J. Biotechnol. Bioeng. 17: 276-282.
  15. Marokhazi, J., K. Lengyel, S. Pekar, G. Felfoldi, A. Patthy, L. Graf, A. Fodor, and I. Venekei (2004) Comparison of proteolytic activities produced by entomopathogenic Photorhabdus bacteria: strainand phase-dependent heterogeneity in composition and activity of four enzymes. Appl. Environ. Micobiol. 70: 7311-7320. https://doi.org/10.1128/AEM.70.12.7311-7320.2004
  16. Bedding, R. A. and R. J. Akhurst (1975) A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica. 21: 109-110. https://doi.org/10.1163/187529275X00419
  17. Akhurst, R. J. (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes, Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
  18. Crawford J. M. and R. Kontnik, J. Clardy (2010) Regulating alternative lifestyles in Entomopathogenic Bacteria. Curr. Biol. 20: 69-74. https://doi.org/10.1016/j.cub.2009.10.059
  19. Park, Y. J., Y. H. Choi, and Y. G. Kim (2005) An entomopathogenic bacterium, Xenorhabdus nematophila, causes hemocyte apoptosis of beet armyworm, Spodoptera exigua. J. Asia Pac. Entomol. 8: 153-159. https://doi.org/10.1016/S1226-8615(08)60086-2
  20. Ullah I., A. L. Khan, L. Ali, A. R. Khan, M. Waqas, J. Hussain, I. J. Lee, and J. H. Shin (2015) Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. J. Microbiol. 53: 127-33. https://doi.org/10.1007/s12275-015-4632-4
  21. Smigielski A. J., R. J. Akhurst, N. E. Boemare (1994) Phase variation in Xenorhabdus nematophilus and Photorhabdus luminescens: Differences in respiratory activity and membrane energization. Appl. Environ. Microbiol. 60: 120-125.
  22. Yu, Y. S. and S. H. Park (1999) In vitro culture of entomopathogenic nematode with its symbiont for biopesticide. Kor. J. Biotechnol. Bioeng. 14: 303-308.
  23. Kontnik, R., J. M. Crawford, and J. Clardy (2010) Exploiting a global regulator for small molecule discovery in Photorhabdus luminescens. ACS Chem. Biol. 5: 659-665. https://doi.org/10.1021/cb100117k
  24. Park, G. S., E. K. Jang, M. S. Kim, and J. H. Shin (2012) Insecticidal activity and stability by freeze-drying of entomopathogenic bacteria, Photorhabdus temperata M1021. J. Appl. Biol. Chem. 55: 123-127. https://doi.org/10.3839/jabc.2011.069
  25. Theunissen, J. J., E. Stolz, and M. F. Michel (1993) The effects of medium and rate of freezing on the survival of chlamydias after lyophilization. J. Appl. Bacteriol. 75: 473-477. https://doi.org/10.1111/j.1365-2672.1993.tb02804.x
  26. Seo, S. Y., H. J. Jang, K. W. Kim, and Y. G. Kim (2010) Comparative analysis of immunosuppressive metabolites synthesized by an entomopathogenic bacterium, Photorhabdus temperata spp. temperata, to select economic bacterial culture media. Kor. J. Appl. Entomol. 49: 409-416. https://doi.org/10.5656/KSAE.2010.49.4.409

Cited by

  1. Present and Perspective on Insect Biotechnology vol.30, pp.6, 2015, https://doi.org/10.7841/ksbbj.2015.30.6.257