References
- Huang, G., F. Chen, D. Wei, X. Zhang, and G. Chen (2010) Biodiesel production by microalgal biotechnology. Appl. Energ. 87: 38-46. https://doi.org/10.1016/j.apenergy.2009.06.016
- Najafi, G., B. Ghobadian, T. Tavakoli, and T. Yusaf (2009) Potential of bioethanol production from agricultural wastes in Iran. Renew. Sust. Energ. Rev. 13: 1418-1427. https://doi.org/10.1016/j.rser.2008.08.010
- Swana, J., Y. Yang, M. Behnam, and R. Thompson (2011) An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresour. Technol. 102: 2112-2117. https://doi.org/10.1016/j.biortech.2010.08.051
- Farrell, A. E., R. J. Plevin, B. T. Turner, A. D. Jones, M. O'Hare, and D. M. Kammen (2006) Ethanol can contribute to energy and environmental goals. Science. 311: 506-508. https://doi.org/10.1126/science.1121416
- Ho, N. W. Y., Z. Chen, and A. P. Brainard (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64: 1852-1859.
- Jin, Y. S., H. Ni, J. M. Laplaza, and T. W. Jeffries (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol. 69: 495-503. https://doi.org/10.1128/AEM.69.1.495-503.2003
- Toivari, M. H., A. Aristidou, L. Ruohonen, and M. Penttila (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 3: 236-249. https://doi.org/10.1006/mben.2000.0191
- Ha, S. J., J. M. Galazka, S. R. Kim, J. H. Choi, X. Yang, J. H. Seo, N. L. Glass, J. H. Cate, and Y. S. Jin (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A. 108: 504-509. https://doi.org/10.1073/pnas.1010456108
- Nakamura, N., R. Yamada, S. Katahira, T. Tanaka, H. Fukuda, and A. Kondo (2008) Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of beta-glucosidase on its cell surface. Enzyme Microb. Technol. 43: 233-236. https://doi.org/10.1016/j.enzmictec.2008.04.003
- Aeling, K., K. Salmon, J. Laplaza, L. Li, J. Headman, A. Hutagalung, and S. Picataggio (2012) Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 39: 1597-1604. https://doi.org/10.1007/s10295-012-1169-y
- Ha, S. J., S. R. Kim, H. Kim, J. Du, J. H. D. Cate, and Y. S. Jin (2013) Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Bioresour. Technol. 149: 525-531. https://doi.org/10.1016/j.biortech.2013.09.082
- Matsushika, A., H. Inoue, K. Murakami, O. Takimura, and S. Sawayama (2009) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol. 100: 2392-2398. https://doi.org/10.1016/j.biortech.2008.11.047
- Sedlak, M. and N. Ho (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces; yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 114: 403-416. https://doi.org/10.1385/ABAB:114:1-3:403
- Davison, B., J. Lee, M. Finkelstein, J. McMillan, D. Schell, J. Farmer, and M. Newman (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor. Humana Press
- Kumar, R., and C. E. Wyman (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol. Bioeng. 102: 457-467. https://doi.org/10.1002/bit.22068
- Ghosh, P., N. B. Pamment, and W. R. B. Martin (1982) Simultaneous saccharification and fermentation of cellulose: effect of betad-glucosidase activity and ethanol inhibition of cellulases. Enzyme Microb. Technol. 4: 425-430. https://doi.org/10.1016/0141-0229(82)90075-8
- Wyman, C. E., S. R. Decker, M. E. Himmel, J. W. Brady, C. E. Skopec, and L. Viikari (2005) Hydrolysis of cellulose and hemicellulose. Polysaccharides: Structural Diversity and Functional Versatility (second ed.). 995-1033.
- Cheon, Y., J.-S. Kim, J.-B. Park, P. Heo, J. H. Lim, G. Y. Jung, J.- H. Seo, J. H. Park, H. M. Koo, K. M. Cho, J.-B. Park, S.-J. Ha, and D.-H. Kweon (2014) A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. J. Biotechnol. 182??83: 30-36. https://doi.org/10.1016/j.jbiotec.2014.04.010
- Lark, N., Y. Xia, C.-G. Qin, C. S. Gong, and G. T. Tsao (1997) Production of ethanol from recycled paper sludge using cellulase and yeast, Kluveromyces marxianus. Biomass Bioenergy. 12: 135-143. https://doi.org/10.1016/S0961-9534(96)00069-4
- Loser, C., T. Urit, A. Stukert, and T. Bley (2013) Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale. J. Biotechnol. 163: 17-23. https://doi.org/10.1016/j.jbiotec.2012.10.009
- Fonseca, G., E. Heinzle, C. Wittmann, and A. Gombert (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79: 339-354. https://doi.org/10.1007/s00253-008-1458-6
- Limtong, S., C. Sringiew, and W. Yongmanitchai (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374. https://doi.org/10.1016/j.biortech.2006.10.044
- Heo, P., T.-J. Yang, S.-C. Chung, Y. Cheon, J.-S. Kim, J.-B. Park, H. M. Koo, K. M. Cho, J.-H. Seo, J. C. Park, and D.-H. Kweon (2013) Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. J. Biotechnol. 167: 323-325. https://doi.org/10.1016/j.jbiotec.2013.06.020
- Jeong, H., D.-H. Lee, S. H. Kim, H.-J. Kim, K. Lee, J. Y. Song, B. K. Kim, B. H. Sung, J. C. Park, J. H. Sohn, H. M. Koo, and J. F. Kim (2012) Genome Sequence of the Thermotolerant Yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryotic Cell. 11: 1584-1585. https://doi.org/10.1128/EC.00260-12
- Pecota, D. C., V. Rajgarhia, and N. A. Da Silva (2007) Sequential gene integration for the engineering of Kluyveromyces marxianus. J. Biotechnol. 127: 408-416. https://doi.org/10.1016/j.jbiotec.2006.07.031
Cited by
- Sequence analysis of KmXYL1 genes and verification of thermotolerant enzymatic activities of xylose reductase from four Kluyveromyces marxianus strains vol.21, pp.5, 2016, https://doi.org/10.1007/s12257-016-0363-6
- Physiological and Metabolomic Analysis of Issatchenkia orientalis MTY1 With Multiple Tolerance for Cellulosic Bioethanol Production 2017, https://doi.org/10.1002/biot.201700110
- Ethanol production from xylose is highly increased by the Kluyveromyces marxianus mutant 17694-DH1 pp.1615-7605, 2018, https://doi.org/10.1007/s00449-018-2014-0
- Xylitol Production by Kluyveromyces marxianus 36907-FMEL1 at High Temperature was Considerably Increased through the Optimization of Agitation Conditions vol.45, pp.1, 2015, https://doi.org/10.4014/mbl.1611.11003
- Overexpression of Endogenous Xylose Reductase Enhanced Xylitol Productivity at 40 °C by Thermotolerant Yeast Kluyveromyces marxianus vol.189, pp.2, 2015, https://doi.org/10.1007/s12010-019-03019-9
- Alleviation of catabolite repression in Kluyveromyces marxianus : the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose vol.12, pp.None, 2015, https://doi.org/10.1186/s13068-019-1431-x
- Overexpression of Mutant Galactose Permease (ScGal2_N376F) Effective for Utilization of Glucose/Xylose or Glucose/Galactose Mixture by Engineered Kluyveromyces marxianus vol.30, pp.12, 2015, https://doi.org/10.4014/jmb.2008.08035