DOI QR코드

DOI QR Code

Effects of Maltogenic Amylase on Textural Properties of Dough and Quality Characteristics of White Pan Bread

Maltogenic Amylase가 식빵반죽의 물성과 식빵의 품질 특성에 미치는 영향

  • Yoon, Seongjun (Department of Baking Science and Techonology, Hyejeon College) ;
  • Cho, Namji (Department of Baking Science and Techonology, Hyejeon College) ;
  • Lee, Soo-Jeong (Department of Food and Nutrition, Bucheon University) ;
  • Moon, Sung-Won (Department of Hotel & Foodservice Culinary Arts, Youngdong University) ;
  • Jeong, Yoonhwa (Department of Food Science and Nutrition, Dankook University)
  • 윤성준 (혜전대학교 제과제빵과) ;
  • 조남지 (혜전대학교 제과제빵과) ;
  • 이수정 (부천대학교 식품영양과) ;
  • 문성원 (영동대학교 호텔외식조리학과) ;
  • 정윤화 (단국대학교 식품영양학과)
  • Received : 2015.01.12
  • Accepted : 2015.02.11
  • Published : 2015.05.31

Abstract

Effects of maltogenic amylase on textural properties of dough and quality characteristics of white pan bread were investigated. White pan bread was prepared with four different levels of maltogenic amylase contents (M-1: 0.048 U/g, M-2: 0.060 U/g, M-3: 0.072 U/g, M-4: 0.084 U/g). The setback by amylograph for the control was $480.0{\pm}12.25$ Brabender Unit (B.U.) while M-4 showed the a setback of $215.0{\pm}5.00B.U.$ The absorption, mixing tolerance index, and stability by farinogram were not significantly different (P>0.05) for across all treatments. The area under the curve (135 min) by extensogram was higher than all samples. The texture profile analysis results showed that there was significant decreasing in hardness for the maltogenic amylase infused bread (P<0.05). M-3 and M-4 showed higher springiness and cohesiveness but lower hardness than control over 1 to 3 days, indicating possibly extended shelf-life. Imaging scan showed that air cell size less than $0.4mm^2$ for the control and M-4 were at rates of 94.90% and 95.70%, respectively. For sensory evaluation, M-3 and M-4 showed higher intensities than the control for taste, flavor, texture, mouthfeel, and moistness quality. These results imply that the quality of white pan bread could be improved by adding maltogenic amylase without the use of chemical additives.

식빵반죽의 아밀로그램의 setback은 대조군이 $480.0{\pm}12.25B.U.$, M-4가 $215.0{\pm}5.00B.U.$로 maltogenic amylase의 첨가량이 증가할수록 유의적으로 감소하였다. 파리노그램 특성은 흡수율, mixing tolerance index, stability 등 대조군과 maltogenic amylase의 첨가군과 유의적인 차이는 없었다. 익스텐소그램의 RTE(resistance to extensibility)/EXT(extensibility)는 대조군과 첨가군 간에 유의적 차이는 없었으나 RTE 90분과 AUC(area under curve) 135분에서 대조군과 비교하여 유의적으로 증가하여(P<0.05) 식빵반죽에 maltogenic amylase를 사용하면 빵의 부피에 영향이 있을 것으로 판단되었다. 식빵의 texture profile analysis는 대조군과 비교하여 maltogenic amylase 첨가군의 경도가 유의적으로 낮게 나타났으며(P<0.05) M-3, M-4가 대조군과 비교하여 약 1~3일 정도 노화가 지연된 것으로 생각된다. 빵의 탄력성과 응집성은 대조구와 유의적 차이는 없었으나 점착성과 씹힘성은 유의적으로 감소하여(P<0.05) 식감 개선에 영향을 주는 것으로 나타났다. Imaging scan 결과 대조군과 비교하여 4, 5구역의 평균 기공 크기는 maltogenic amylase 첨가량이 증가할수록 유의적으로 증가하였으며(P<0.05) $0.4mm^2$ 이하의 미세기공은 maltogenic amylase의 첨가량이 증가할수록 94.90~95.70%로 대조군과 비교하여 조밀하고 일정한 기공구조를 가진 것으로 나타나, 빵의 부피는 빵 내부의 기공 수, 기공의 신장성 증가와 밀접한 관계가 있었다. 관능검사는 맛, 풍미, 조직감, 식감과 촉촉한 정도가 대조구와 비교하여 높게 나타났다. 이상의 결과로 maltogenic amylase를 식빵반죽에 첨가 시 반죽의 물성이 개선되었으며 식빵 내부구조가 조밀하고 일정한 기공구조를 형성하여 식감과 관능검사에서 우수한 결과를 나타내어 화학적 첨가물을 사용하지 않고도 식빵의 품질을 향상시킬 수 있음을 확인하였다.

Keywords

References

  1. Kim SK. 1987. Gelatinization and retrogradation have a close relation of food industry. Monthly Food Industry 54: 58-63.
  2. Gedders WF, Bice CW. 1946. The role of starch in bread staling. Quartermaster Corps Report QMC 17-10. Office of the Quartermaster General, Washington, DC, USA.
  3. Hertz KO. 1965. Staling of bread, a review. Food Technol 19: 1828.
  4. D'ppolonia BL, Morad MM. 1981. Bread staling. Cereal Chem 58: 186-190.
  5. Pyler EJ. 1988. Baking science & technology. 3rd ed. Sosland Publishing Co., Marriam, KS, USA. p 402-411.
  6. Bechtel WG, Meisner DF, Bradley WB. 1953. The effect of the crust on the staling of bread. Cereal Chem 30: 160-168.
  7. Bice CW, Geddes WF. 1949. Studies on bread staling. IV. Evaluation of methods for the measurement of changes which occur during bread staling. Cereal Chem 26: 440-465.
  8. Maga JA, Ponte JG. 1975. Bread staling. CRC Crit Rev Food Technol 5: 443-486. https://doi.org/10.1080/10408397509527182
  9. Zobel HF, Kulp K. 1996. The staling mechanism. In Baked Goods Freshness; Technology, Evaluation, and Inhibition of Staling. Hebeda RE, Zobel HF, eds. Marcel Dekker, Inc., New York, NY, USA. p 1-64.
  10. Michael J, Geoffrey C, David D, James G, Hall P, Jones L, Lepper D, Anne M, Rogerson D, Soulsby P, Strang G, Tipping P, Roger W. 2010. Waste Strategy for England 2007. The House of Commons, London, UK. p 3-55.
  11. Tamstorf S, Jonsson T, Krog N. 1986. Ice crystallization and its control in frozen-food systems. In Food Structure and Behaviour. Blanshard JMV, Lillford P, eds. Academic Press, London, UK. p 51-65.
  12. Blanshard JMV, Frazier PJ, Galliard T. 1987. Chemistry and physics of baking. Blanshard JMV, Frazier PJ, Galliard T, eds. The Royal Society of Chemistry, London, UK. p 75-88.
  13. Kim SK, Cho NJ, Kim YH, Yoon SJ, Lee JJ, Jung SK, Chea DJ. 2009. Baking science. BNC World, Seoul, Korea. p 198.
  14. Cho NJ, Kim HY, Kim SK. 1999. Effect of flour brew with Bifidobacterium bifidum as a natural bread improver. J Korean Soc Food Sci Nutr 28: 1275-1282.
  15. Cho NJ, Lee SK, Kim SK, Joo HK. 1998. Effect of wheat flour brew with Bifidobacterium bifidum on rheological properties of wheat flour dough. Korean J Food Sci Technol 30: 832-841.
  16. Yoon SJ, Cho NJ. 2010. Quality characteristics of white pan bread by using fat-substitutes. Korean J of Baking 2: 6-11.
  17. Yoon SJ, Cho NJ, Jeong YH. 2008. Development of a carbohydrate-based fat replacement for use in bread making. J East Asian Soc Dietary Life 18: 1032-1038.
  18. Chamberlain N, Collins TH, Mcdermott EE. 1981. Alphaamylase and bread properties. Int J Food Sci Technol 16: 127-152.
  19. Cho NJ, Kim YH, Ahn HK, Shin SN, Hwang YK. 2000. Science of baking materials. BNC World, Seoul, Korea. p 48-52.
  20. Lagrain B, Leman P, Goesaert H, Delcour JA. 2008. Impact thermostable amylases during bread making on wheat bread crumb structure and texture. Food Res Int 41: 819-827. https://doi.org/10.1016/j.foodres.2008.07.006
  21. Kim JH, Maeda T, Morita N. 2006. Effect of fungal ${\alpha}$-amylase on the dough properties and bread quality of wheat flour substituted with polished flours. Food Res Int 39: 117-126. https://doi.org/10.1016/j.foodres.2005.06.008
  22. AACC. 2000. Approved Method of the AACC. 10th ed. American Association of Cereal Chemists, St. Paul, MN, USA. Methods 22-10.
  23. AACC. 2000. Approved Method of the AACC. 10th ed. American Association of Cereal Chemists, St. Paul, MN, USA. Methods 54-21.
  24. AACC. 2000. Approved Method of the AACC. 10th ed. American Association of Cereal Chemists, St. Paul, MN, USA. Methods 54-10.
  25. Finney KF. 1984. An optimized, straight dough, bread making method after 44 years. Cereal Chem 61: 20-27.
  26. Leman P, Goesaert H, Vandeputte GE, Lagrain B, Delcour JA. 2005. Maltogenic amylase has a non-typical impact on the molecular and rheological properties of starch. Carbohydr Polym 62: 205-213. https://doi.org/10.1016/j.carbpol.2005.02.023
  27. Shin GM. 2008. Quality characteristics of white pan bread added with Poria cocos powder. J East Asian Soc Dietary Life 18: 554-562.
  28. Goesaert H, Slade L, Levin H, Delcour JA. 2009. Amylases and bread firming: an integrated view. J Cereal Sci 50: 345-352. https://doi.org/10.1016/j.jcs.2009.04.010
  29. Harinder K, Bains GS. 1987. High ${\alpha}$-amylase flours: Effect of pH, acid, and salt on paste characteristics. Cereal Chem 64: 359-363.
  30. Kim SK, Cho NJ, Kim YH, Yoon SJ, Lee JJ, Jung SK, Chea DJ. 2009. Farinograph. In Baking Science. BNC World, Seoul, Korea. p 164-173.
  31. Reed G. 1975. Health and legal aspects of the use of enzymes. In Enzymes in Food Processing. 2nd ed. Academic Press, New York, NY, USA. p 549-554.
  32. Faubion JM, Faridi H. 1985. Dough rheololgy. In Rheology of Wheat Products. Faridi H, ed. American Association of Cereal Chemistry Inc., St. Paul, MN, USA. p 1-9.
  33. Bechtel WG, Meisner DF. 1954. Staling studies of bread made with flour fractions. Cereal Chem 31: 182-187.
  34. Martine ML, Hoseney RC. 1991. A mechanism of bread firming. II. Role of starch hydrolyzing enzymes. Cereal Chem 68: 503-507.
  35. Sroana BS, Beanb SR, MacRitchie F. 2009. Mechanism of gas cell stabilization in bread making. I. The primary gluten-starch matrix. J Cereal Sci 49: 32-40. https://doi.org/10.1016/j.jcs.2008.07.003
  36. Pomeranz Y, Finney KF. 1975. Sugars in breadmaking. Baker' Digest 49: 20-27.
  37. Synowiecki J. 2007. The use of starch processing enzymes in the food industry. In Industrial Enzymes: Structure, Function and Applications. Polaina J, MacCabe AP, eds. Springer, Dordrecht, The Netherlands. p 19-34.

Cited by

  1. Improving changes in physical, sensory and texture properties of cake supplemented with purified amylase from fenugreek (Trigonella foenum graecum) seeds vol.8, pp.3, 2018, https://doi.org/10.1007/s13205-018-1197-z