DOI QR코드

DOI QR Code

Effect of Pioglitazone on Excitotoxic Neuronal Damage in the Mouse Hippocampus

  • Lee, Choong Hyun (Department of Pharmacy, College of Pharmacy, Dankook University) ;
  • Yi, Min-Hee (Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine) ;
  • Chae, Dong Jin (Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine) ;
  • Zhang, Enji (Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine) ;
  • Oh, Sang-Ha (Department of Plastic Surgery, Chungnam National University Hospital) ;
  • Kim, Dong Woon (Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine)
  • Received : 2014.12.22
  • Accepted : 2015.02.07
  • Published : 2015.05.01

Abstract

Pioglitazone (PGZ), a synthetic peroxisome proliferator-activated receptor ${\gamma}$ agonist, is known to regulate inflammatory process and to have neuroprotective effects against neurological disorders. In the present study, we examined the effects of 30 mg/kg PGZ on excitotoxic neuronal damage and glial activation in the mouse hippocampus following intracerebroventricular injection of kainic acid (KA). PGZ treatment significantly reduced seizure-like behavior. PGZ had the neuroprotective effect against KA-induced neuronal damage and attenuated the activations of astrocytes and microglia in the hippocampal CA3 region. In addition, MPO and $NF{\kappa}B$ immunoreactivities in the glial cells were also decreased in the PGZ-treated group. These results indicate that PGZ had anticonvulsant and neuroprotective effects against KA-induced excitotocix injury, and that neuroprotective effect of PGZ might be due to the attenuation of KA-induced activation in astrocytes and microglia as well as KA-induced increases in MPO and $NF{\kappa}B$.

Keywords

References

  1. Abdallah, D. M. (2010) Anticonvulsant potential of the peroxisome proliferator-activated receptor gamma agonist pioglitazone in pentylenetetrazole-induced acute seizures and kindling in mice. Brain Res. 1351, 246-253. https://doi.org/10.1016/j.brainres.2010.06.034
  2. Acarin, L., Gonzalez, B. and Castellano, B. (2001) Triflusal posttreatment inhibits glial nuclear factor-kappaB, downregulates the glial response, and is neuroprotective in an excitotoxic injury model in postnatal brain. Stroke 32, 2394-2402. https://doi.org/10.1161/hs1001.097243
  3. Bales, K. R., Du, Y., Dodel, R. C., Yan, G. M., Hamilton-Byrd, E. and Paul, S. M. (1998) The NF-kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation. Brain Res. Mol. Brain Res. 57, 63-72. https://doi.org/10.1016/S0169-328X(98)00066-7
  4. Beal, M. F. (1992) Mechanisms of excitotoxicity in neurologic diseases. FASEB J. 6, 3338-3344.
  5. Berger, J. P., Akiyama, T. E. and Meinke, P. T. (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol. Sci. 26, 244-251. https://doi.org/10.1016/j.tips.2005.03.003
  6. Bernardo, A., Levi, G. and Minghetti, L. (2000) Role of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its natural ligand 15-deoxy-Delta12, 14-prostaglandin J2 in the regulation of microglial functions. Eur. J. Neurosci. 12, 2215-2223. https://doi.org/10.1046/j.1460-9568.2000.00110.x
  7. Breidert, T., Callebert, J., Heneka, M. T., Landreth, G., Launay, J. M. and Hirsch, E. C. (2002) Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson's disease. J. Neurochem. 82, 615-624. https://doi.org/10.1046/j.1471-4159.2002.00990.x
  8. Chang, C. Y., Choi, D. K., Lee, D. K., Hong, Y. J. and Park, E. J. (2013) Resveratrol confers protection against rotenone-induced neurotoxicity by modulating myeloperoxidase levels in glial cells. PloS One 8, e60654. https://doi.org/10.1371/journal.pone.0060654
  9. Chang, C. Y., Song, M. J., Jeon, S. B., Yoon, H. J., Lee, D. K., Kim, I. H., Suk, K., Choi, D. K. and Park, E. J. (2011) Dual functionality of myeloperoxidase in rotenone-exposed brain-resident immune cells. Am. J. Pathol. 179, 964-979. https://doi.org/10.1016/j.ajpath.2011.04.033
  10. Chinetti, G., Fruchart, J. C. and Staels, B. (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res. 49, 497-505. https://doi.org/10.1007/s000110050622
  11. Choi, D. K., Pennathur, S., Perier, C., Tieu, K., Teismann, P., Wu, D. C., Jackson-Lewis, V., Vila, M., Vonsattel, J. P., Heinecke, J. W. and Przedborski, S. (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice. J. Neurosci. 25, 6594-6600. https://doi.org/10.1523/JNEUROSCI.0970-05.2005
  12. Chung, S. Y. and Han, S. H. (2003) Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J. Pineal Res. 34, 95-102. https://doi.org/10.1034/j.1600-079X.2003.00010.x
  13. Hong, S., Xin, Y., HaiQin, W., GuiLian, Z., Ru, Z., ShuQin, Z., HuQing, W., Li, Y., Ning, B. and YongNan, L. (2013) The PPARgamma agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem. Int. 63, 405-412. https://doi.org/10.1016/j.neuint.2013.07.010
  14. Hong, S., Xin, Y., HaiQin, W., GuiLian, Z., Ru, Z., ShuQin, Z., HuQing, W., Li, Y. and Yun, D. (2012) The PPARgamma agonist rosiglitazone prevents cognitive impairment by inhibiting astrocyte activation and oxidative stress following pilocarpine-induced status epilepticus. Neurol. Sci. 33, 559-566. https://doi.org/10.1007/s10072-011-0774-2
  15. Horner, P. J. and Palmer, T. D. (2003) New roles for astrocytes: the nightlife of an 'astrocyte'. La vida loca! Trends Neurosci. 26, 597-603. https://doi.org/10.1016/j.tins.2003.09.010
  16. Inestrosa, N. C., Godoy, J. A., Quintanilla, R. A., Koenig, C. S. and Bronfman, M. (2005) Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents beta-amyloid neurodegeneration: role of Wnt signaling. Exp. Cell Res. 304, 91-104. https://doi.org/10.1016/j.yexcr.2004.09.032
  17. Jeong, E. A., Jeon, B. T., Shin, H. J., Kim, N., Lee, D. H., Kim, H. J., Kang, S. S., Cho, G. J., Choi, W. S. and Roh, G. S. (2011) Ketogenic diet-induced peroxisome proliferator-activated receptor-gamma activation decreases neuroinflammation in the mouse hippocampus after kainic acid-induced seizures. Exp. Neurol. 232, 195-202. https://doi.org/10.1016/j.expneurol.2011.09.001
  18. Kim, D. H., Yoon, B. H., Jung, W. Y., Kim, J. M., Park, S. J., Park, D. H., Huh, Y., Park, C., Cheong, J. H., Lee, K. T., Shin, C. Y. and Ryu, J. H. (2010) Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. Neuropharmacology 59, 20-30. https://doi.org/10.1016/j.neuropharm.2010.03.012
  19. Kumar, A. P., Ryan, C., Cordy, V. and Reynolds, W. F. (2005) Inducible nitric oxide synthase expression is inhibited by myeloperoxidase. Nitric Oxide 13, 42-53. https://doi.org/10.1016/j.niox.2005.04.002
  20. Lau, D., Mollnau, H., Eiserich, J. P., Freeman, B. A., Daiber, A., Gehling, U. M., Brummer, J., Rudolph, V., Munzel, T., Heitzer, T., Meinertz, T. and Baldus, S. (2005) Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc. Natl. Acad. Sci. U.S.A. 102, 431-436. https://doi.org/10.1073/pnas.0405193102
  21. Lee, C. H., Park, O. K., Yoo, K. Y., Byun, K., Lee, B., Choi, J. H., Hwang, I. K., Kim, Y. M. and Won, M. H. (2011) The role of peroxisome proliferator-activated receptor gamma, and effects of its agonist, rosiglitazone, on transient cerebral ischemic damage. J. Neurol. Sci. 300, 120-129. https://doi.org/10.1016/j.jns.2010.09.005
  22. Lee, C. H., Yoo, K. Y., Choi, J. H., Park, O. K., Hwang, I. K., Kim, S. K., Kang, I. J., Kim, Y. M. and Won, M. H. (2010) Neuronal damage is much delayed and microgliosis is more severe in the aged hippocampus induced by transient cerebral ischemia compared to the adult hippocampus. J. Neurol. Sci. 294, 1-6. https://doi.org/10.1016/j.jns.2010.04.014
  23. Lerner-Natoli, M., Montpied, P., Rousset, M. C., Bockaert, J. and Rondouin, G. (2000) Sequential expression of surface antigens and transcription factor NFkappaB by hippocampal cells in excitotoxicity and experimental epilepsy. Epilepsy Res. 41, 141-154. https://doi.org/10.1016/S0920-1211(00)00132-7
  24. Luo, Y., Yin, W., Signore, A. P., Zhang, F., Hong, Z., Wang, S., Graham, S. H. and Chen, J. (2006) Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J. Neurochem. 97, 435-448. https://doi.org/10.1111/j.1471-4159.2006.03758.x
  25. Matsuoka, Y., Kitamura, Y., Okazaki, M., Terai, K. and Taniguchi, T. (1999) Kainic acid-induced activation of nuclear factor-kappaB in rat hippocampus. Exp. Brain Res. 124, 215-222. https://doi.org/10.1007/s002210050616
  26. McLin, J. P. and Steward, O. (2006) Comparison of seizure phenotype and neurodegeneration induced by systemic kainic acid in inbred, outbred, and hybrid mouse strains. Eur. J. Neurosci. 24, 2191-2202. https://doi.org/10.1111/j.1460-9568.2006.05111.x
  27. Minghetti, L. and Levi, G. (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 54, 99-125. https://doi.org/10.1016/S0301-0082(97)00052-X
  28. Miyamoto, S. and Verma, I. M. (1995) Rel/NF-kappa B/I kappa B story. Adv. Cancer Res. 66, 255-292. https://doi.org/10.1016/S0065-230X(08)60257-2
  29. Okada, K., Yamashita, U. and Tsuji, S. (2006) Ameliorative effect of pioglitazone on seizure responses in genetically epilepsy-susceptible EL mice. Brain Res. 1102, 175-178. https://doi.org/10.1016/j.brainres.2006.04.108
  30. Penkowa, M., Florit, S., Giralt, M., Quintana, A., Molinero, A., Carrasco, J. and Hidalgo, J. (2005) Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures. J. Neurosci. Res. 79, 522-534. https://doi.org/10.1002/jnr.20387
  31. Ravizza, T., Rizzi, M., Perego, C., Richichi, C., Veliskova, J., Moshe, S. L., De Simoni, M. G. and Vezzani, A. (2005) Inflammatory response and glia activation in developing rat hippocampus after status epilepticus. Epilepsia 46 Suppl 5, 113-117. https://doi.org/10.1111/j.1528-1167.2005.01006.x
  32. Ricci, G., Volpi, L., Pasquali, L., Petrozzi, L. and Siciliano, G. (2009) Astrocyte-neuron interactions in neurological disorders. J. Biol. Phys. 35, 317-336. https://doi.org/10.1007/s10867-009-9157-9
  33. Sun, H., Huang, Y., Yu, X., Li, Y., Yang, J., Li, R., Deng, Y. and Zhao, G. (2008) Peroxisome proliferator-activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine-induced status epilepticus in rats. Int. J. Dev. Neurosci. 26, 505-515. https://doi.org/10.1016/j.ijdevneu.2008.01.009
  34. Tooyama, I., Bellier, J. P., Park, M., Minnasch, P., Uemura, S., Hisano, T., Iwami, M., Aimi, Y., Yasuhara, O. and Kimura, H. (2002) Morphologic study of neuronal death, glial activation, and progenitor cell division in the hippocampus of rat models of epilepsy. Epilepsia 43 Suppl 9, 39-43. https://doi.org/10.1046/j.1528-1157.43.s.9.10.x
  35. Vamecq, J. and Latruffe, N. (1999) Medical significance of peroxisome proliferator-activated receptors. Lancet 354, 141-148. https://doi.org/10.1016/S0140-6736(98)10364-1
  36. Vezzani, A., Aronica, E., Mazarati, A. and Pittman, Q. J. (2013) Epilepsy and brain inflammation. Exp. Neurol. 244, 11-21. https://doi.org/10.1016/j.expneurol.2011.09.033
  37. Vezzani, A. and Granata, T. (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46, 1724-1743. https://doi.org/10.1111/j.1528-1167.2005.00298.x
  38. Yi, M. H., Kim, S., Zhang, E., Kang, J. W., Park, J. B., Lee, Y. H., Chung, C. K., Kim, Y. M. and Kim, D. W. (2013) IQGAP1 expression in spared CA1 neurons after an excitotoxic lesion in the mouse hippocampus. Cell. Mol. Neurobiol. 33, 1003-1012. https://doi.org/10.1007/s10571-013-9968-x
  39. Yi, M. H., Zhang, E., Kang, J. W., Shin, Y. N., Byun, J. Y., Oh, S. H., Seo, J. H., Lee, Y. H. and Kim, D. W. (2012) Expression of CD200 in alternative activation of microglia following an excitotoxic lesion in the mouse hippocampus. Brain Res. 1481, 90-96. https://doi.org/10.1016/j.brainres.2012.08.053
  40. Yu, X., Shao, X. G., Sun, H., Li, Y. N., Yang, J., Deng, Y. C. and Huang, Y. G. (2008) Activation of cerebral peroxisome proliferator-activated receptors gamma exerts neuroprotection by inhibiting oxidative stress following pilocarpine-induced status epilepticus. Brain Res. 1200, 146-158. https://doi.org/10.1016/j.brainres.2008.01.047
  41. Zhao, Y., Patzer, A., Herdegen, T., Gohlke, P. and Culman, J. (2006). Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. FASEB J. 20, 1162-1175. https://doi.org/10.1096/fj.05-5007com

Cited by

  1. Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation pp.1573-6830, 2017, https://doi.org/10.1007/s10571-017-0554-5
  2. Forsythoside B attenuates memory impairment and neuroinflammation via inhibition on NF-κB signaling in Alzheimer’s disease vol.17, pp.1, 2015, https://doi.org/10.1186/s12974-020-01967-2