References
- Anand, K. J. S., Phil, D. and Soriano, S. G. (2004) Anesthetic agents and the immature brain: Are these toxic or therapeutic? Anesthesiology 101, 527-530. https://doi.org/10.1097/00000542-200408000-00033
- Bevins, R. A. and Besheer, J. (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat. Protoc. 1, 1306-1311. https://doi.org/10.1038/nprot.2006.205
- Boon, W. C., Diepstraten, J., van der Burg, J., Jones, M. E., Simpson, E. R. and van den Buuse, M. (2005) Hippocampal NMDA receptor subunit expression and watermaze learning in estrogen deficient female mice. Brain Res. 140, 127-132. https://doi.org/10.1016/j.molbrainres.2005.07.004
- Brenhouse, H. C. and Andersen, S. L. (2011). Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci. Biobehav. Rev. 35, 1687-1703. https://doi.org/10.1016/j.neubiorev.2011.04.013
- Briner, A., Nikonenko, I., De Roo, M., Dayer, A., Muller, D. and Vutskits, L. (2011) Developmental Stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 115, 282-293. https://doi.org/10.1097/ALN.0b013e318221fbbd
- Broadbent, N. J., Squire, L. R. and Clark, R. E. (2004) Spatial memory, recognition memory, and the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 101, 14515-14520. https://doi.org/10.1073/pnas.0406344101
- Cattano, D., Young, C., Straiko, M. M. and Olney, J. W. (2008) Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth. Analg 106, 1712-1714. https://doi.org/10.1213/ane.0b013e318172ba0a
- Chen, P. E., Errington, M. L., Kneussel, M., Chen, G., Annala, A. J., Rudhard, Y. H., Rast, G. F., Specht, C. G., Tigaret, C. M., Nassar, M. A., Morris, R. G., Bliss, T. V. and Schoepfer, R. (2009) Behavioral deficits and subregion-specific suppression of LTP in mice expressing a population of mutant NMDA receptors throughout the hippocampus. Learn. Mem. 16, 635-644. https://doi.org/10.1101/lm.1316909
- Cui, Y., Ling-Shan, G., Yi, L., Xing-Qi, W., Xue-Mei, Z. and Xiao-Xing, Y. (2011) Repeated administration of propofol upregulated the expression of c-Fos and cleaved-caspase-3 proteins in the developing mouse brain. Indian J. Pharmacol. 43, 648-651.
- D'Agata, V. and Cavallaro, S. (2003) Hippocampal gene expression profiles in passive avoidance conditioning. Eur. J. Neurosci. 18, 2835-2841. https://doi.org/10.1111/j.1460-9568.2003.03025.x
- Dobbing, J. and Sands, J. (1973) Quantitative growth and development of human brain. Arch. Dis. Child. 48, 757-767. https://doi.org/10.1136/adc.48.10.757
- Feng, C. S., Qiu, J. P., Ma, H. C. and Yue, Y. (2007) Effect of propofol on synaptic long-term potentiation in hippocampal slices of rats. Chi. J. Prev. Med. 87, 763-767.
- Flick, R. P., Katusic, S. K., Colligan, R. C., Wilder, R. T., Voigt, R. G., Olson, M. D., Sprung, J., Weaver, A. L., Schroeder, D. R. and Warner, D. O. (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128, e1053-1061. https://doi.org/10.1542/peds.2011-0351
-
Gao, J., Peng, S., Xiang, S., Huang, J. and Chen, P. (2014) Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces
$CaMKII{\alpha}$ in young rats. Neurosci. Lett. 560, 62-66. https://doi.org/10.1016/j.neulet.2013.11.061 - Han, D., Tian, Y., Zhang, T., Ren, G. and Yang, Z. (2011) Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Int. J. Nanomedicine 6, 1453-1461.
- Hasselmo, M. E. (2006) The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710-715. https://doi.org/10.1016/j.conb.2006.09.002
- Hayashi, H., Dikkes, P. and Soriano, S. G. (2002) Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Pediatr. Anaesth. 12, 770-774. https://doi.org/10.1046/j.1460-9592.2002.00883.x
- Jevtovic-Todorovic, V., Hartman, R. E., Izumi, Y., Benshoff, N. D., Dikranian, K., Zorumski, C. F., Olney, J. W. and Wozniak, D. F. (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci 23, 876-882.
- Karen, T., Schlager, G. W., Bendix, I., Sifringer, M., Herrmann, R., Pantazis, C., Enot, D., Keller, M., Kerner, T. and Felderhoff-Mueser, U. (2013) Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome. PloS One 8, e64480. https://doi.org/10.1371/journal.pone.0064480
- Kikuchi, T., Wang, Y., Sato, K. and Okumura, F. (1998) In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats. Br. J. Anaesth. 80, 644-648. https://doi.org/10.1093/bja/80.5.644
- Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Yang, S.-I., Cheong, J. H., Shin, C. Y. and Ko, K. H. (2011). The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol. Lett. 201, 137-142. https://doi.org/10.1016/j.toxlet.2010.12.018
- Li, J., Xiong, M., Alhashem, H. M., Zhang, Y., Tilak, V., Patel, A., Siegel, A., Ye, J. H. and Bekker, A. (2014) Effects of prenatal propofol exposure on postnatal development in rats. Neurotixicol. Teratol. 43, 51-58. https://doi.org/10.1016/j.ntt.2014.03.006
- Lynch, M. A. (2004) Long-term potentiation and memory. Physiol. Rev. 84, 87-136. https://doi.org/10.1152/physrev.00014.2003
- Mallory, M. D., Baxter, A. L., Yanosky, D. J., Cravero, J. P. and Pediatric Sedation Research, C. (2011) Emergency physician-administered propofol sedation: a report on 25,433 sedations from the pediatric sedation research consortium. Ann Emerg Med 57, 462-468. https://doi.org/10.1016/j.annemergmed.2011.03.008
-
Maurice, T., Phan, V. L., Noda, Y., Yamada, K., Privat, A. and Nabeshima, T. (1999) The attenuation of learning impairments induced after exposure to CO or trimethyltin in mice by sigma (
${\sigma}$ ) receptor ligands involves both${\sigma}1$ and${\sigma}2$ sites. Br. J. Pharmacol. 127, 335-342. https://doi.org/10.1038/sj.bjp.0702553 - Milanovic, D., Popic, J., Pesic, V., Loncarevic-Vasiljkovic, N., Kanazir, S., Jevtovic-Todorovic, V. and Ruzdijic, S. (2010) Regional and temporal profiles of calpain and caspase-3 activities in postnatal rat brain following repeated propofol administration. Dev. Neurosci. 32, 288-301. https://doi.org/10.1159/000316970
- Morgan, D., Munireddy, S., Alamed, J., DeLeon, J., Diamond, D. M., Bickford, P., Hutton, M., Lewis, J., McGowan, E. and Gordon, M. N. (2008) Apparent behavioral benefits of tau overexpression in P301L tau transgenic mice. J. Alzheimers Dis. 15, 605-614. https://doi.org/10.3233/JAD-2008-15407
- Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., Piven, J. and Crawley, J. N. (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 3, 287-302. https://doi.org/10.1111/j.1601-1848.2004.00076.x
- Nakazawa, K., McHugh, T. J., Wilson, M. A. and Tonegawa, S. (2004) NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5, 361-372. https://doi.org/10.1038/nrn1385
- Paoletti, P., Bellone, C. and Zhou, Q. (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383-400. https://doi.org/10.1038/nrn3504
- Pellow, S., Chopin, P., File, S. E. and Briley, M. (1985) Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149-167. https://doi.org/10.1016/0165-0270(85)90031-7
- Prut, L. and Belzung, C. (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463, 3-33. https://doi.org/10.1016/S0014-2999(03)01272-X
-
Sarter, M., Bodewitz, G. and Stephens, D. N. (1988) Attenuation of scopolamine-induced impairment of spontaneous alternation behaviour by antagonist but not inverse agonist and agonist
${\beta}$ -carbolines. Psychopharmacology 94, 491-495. https://doi.org/10.1007/BF00212843 - Satomoto, M., Satoh, Y., Terui, K., Miyao, H., Takishima, K., Ito, M. and Imaki, J. (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110, 628-637. https://doi.org/10.1097/ALN.0b013e3181974fa2
- Sun, L. (2010) Early childhood general anaesthesia exposure and neurocognitive development. Br. J. Anaesth. 105 Suppl 1, i61-68. https://doi.org/10.1093/bja/aeq302
- Uslaner, J. M., Parmentier-Batteur, S., Flick, R. B., Surles, N. O., Lam, J. S., McNaughton, C. H., Jacobson, M. A. and Hutson, P. H. (2009) Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology 57, 531-538. https://doi.org/10.1016/j.neuropharm.2009.07.022
- Wang, D., Noda, Y., Zhou, Y., Mouri, A., Mizoguchi, H., Nitta, A., Chen, W. and Nabeshima, T. (2007) The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25-35 icv-injected mice: involvement of dopaminergic systems. Neuropsychopharmacol 32, 1261-1271. https://doi.org/10.1038/sj.npp.1301256
- Weigt, H. U., Georgieff, M., Beyer, C. and Fohr, K. J. (2002) Activation of neuronal N-methyl-D-aspartate receptor channels by lipid emulsions. Anesth. Analg. 94, 331-337. https://doi.org/10.1213/00000539-200202000-00018
- Wilder, R. T., Flick, R. P., Sprung, J., Katusic, S. K., Barbaresi, W. J., Mickelson, C., Gleich, S. J., Schroeder, D. R., Weaver, A. L. and Warner, D. O. (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110, 796-804. https://doi.org/10.1097/01.anes.0000344728.34332.5d
- Xiong, M., Li, J., Alhashem, H. M., Tilak, V., Patel, A., Pisklakov, S., Siegel, A., Ye, J. H. and Bekker, A. (2014) Propofol exposure in pregnant rats induces neurotoxicity and persistent learning deficit in the offspring. Brain Sci. 4, 356-375. https://doi.org/10.3390/brainsci4020356
- Yan, J., Li, Y. R., Zhang, Y., Lu, Y. and Jiang, H. (2014) Repeated exposure to anesthetic ketamine can negatively impact neurodevelopment in infants: a prospective preliminary clinical study. J. Child. Neurol. 29, 1333-1338. https://doi.org/10.1177/0883073813517508
- Yon, J. H., Daniel-Johnson, J., Carter, L. B. and Jevtovic-Todorovic, V. (2005). Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135, 815-827. https://doi.org/10.1016/j.neuroscience.2005.03.064
- Yu, D., Jiang, Y., Gao, J., Liu, B. and Chen, P. (2013). Repeated exposure to propofol potentiates neuroapoptosis and long-term behavioral deficits in neonatal rats. Neurosci. Lett. 534, 41-46. https://doi.org/10.1016/j.neulet.2012.12.033
Cited by
- Persistent neuronal apoptosis and synaptic loss induced by multiple but not single exposure of propofol contribute to long-term cognitive dysfunction in neonatal rats vol.41, pp.5, 2016, https://doi.org/10.2131/jts.41.627
- Neurogenesis and developmental anesthetic neurotoxicity vol.60, 2017, https://doi.org/10.1016/j.ntt.2016.10.001
- Etanercept, an inhibitor of TNF-a, prevents propofol-induced neurotoxicity in the developing brain vol.55, 2016, https://doi.org/10.1016/j.ijdevneu.2016.10.002
- Neonatal Propofol Anesthesia Changes Expression of Synaptic Plasticity Proteins and Increases Stereotypic and Anxyolitic Behavior in Adult Rats vol.32, pp.2, 2017, https://doi.org/10.1007/s12640-017-9730-0
- Review of preclinical studies on pediatric general anesthesia-induced developmental neurotoxicity vol.60, 2017, https://doi.org/10.1016/j.ntt.2016.11.005
- Inhibition of p75 neurotrophin receptor does not rescue cognitive impairment in adulthood after isoflurane exposure in neonatal mice 2017, https://doi.org/10.1093/bja/aew299
- Rearing in an enriched environment attenuated hyperactivity and inattention in the Spontaneously Hypertensive Rats, an animal model of Attention-Deficit Hyperactivity Disorder vol.155, 2016, https://doi.org/10.1016/j.physbeh.2015.11.035
- Multiple exposures of sevoflurane during pregnancy induces memory impairment in young female offspring mice vol.70, pp.6, 2017, https://doi.org/10.4097/kjae.2017.70.6.642
- Cerebrolysin Reduces Astrogliosis and Axonal Injury and Enhances Neurogenesis in Rats After Closed Head Injury pp.1552-6844, 2018, https://doi.org/10.1177/1545968318809916
- Neonatal exposure to propofol affects interneuron development in the piriform cortex and causes neurobehavioral deficits in adult mice pp.1432-2072, 2018, https://doi.org/10.1007/s00213-018-5092-4
- Prospective, randomized, blinded, and placebo-controlled study of Cerebrolysin dose-response effects on long-term functional outcomes in a rat model of mild traumatic brain injury pp.0022-3085, 2018, https://doi.org/10.3171/2017.6.JNS171007
- The abuse of anesthetic propofol: associated with cognitive impairment pp.1869-1889, 2018, https://doi.org/10.1007/s11427-018-9401-9
- A Small Molecule Spinogenic Compound Enhances Functional Outcome and Dendritic Spine Plasticity in a Rat Model of Traumatic Brain Injury pp.1557-9042, 2019, https://doi.org/10.1089/neu.2018.5790
- Early Developmental Exposure to General Anesthetic Agents in Primary Neuron Culture Disrupts Synapse Formation via Actions on the mTOR Pathway vol.19, pp.8, 2018, https://doi.org/10.3390/ijms19082183
- Repeated neonatal isoflurane exposures in the mouse induce apoptotic degenerative changes in the brain and relatively mild long-term behavioral deficits vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-39174-6
- Hyperactive behavior in female rats in utero-exposed to group B Streptococcus-induced inflammation vol.69, pp.None, 2018, https://doi.org/10.1016/j.ijdevneu.2018.06.005
- Early Developmental Exposure to Repetitive Long Duration of Midazolam Sedation Causes Behavioral and Synaptic Alterations in a Rodent Model of Neurodevelopment vol.31, pp.1, 2015, https://doi.org/10.1097/ana.0000000000000541
- Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment vol.165, pp.None, 2015, https://doi.org/10.1016/j.nlm.2018.03.014
- Sex differences in neurodevelopmental abnormalities caused by early-life anaesthesia exposure: a narrative review vol.124, pp.3, 2015, https://doi.org/10.1016/j.bja.2019.12.032
- Neonatal anesthesia and dysregulation of the epigenome vol.105, pp.3, 2015, https://doi.org/10.1093/biolre/ioab136