References
-
B. Fridman, D. Ma, and E. Poletski, Upper semicontinuity of the dimensions of automorphism groups of domains in
${\mathbb{C}}^N$ , Amer. J. Math. 125 (2003), no. 2, 289-299. https://doi.org/10.1353/ajm.2003.0011 - R. E. Greene and K.-T. Kim, Stably-interior points and the semicontinuity of the automorphism group, Math. Z. 277 (2014), no. 3-4, 909-916. https://doi.org/10.1007/s00209-014-1284-8
- R. E. Greene, K.-T. Kim, S. G. Krantz, and A.-R. Seo, Semicontinuity of automorphism groups of strongly pseudoconvex domains: the low differentiability case, Pacific J. Math. 262 (2013), no. 2, 365-395. https://doi.org/10.2140/pjm.2013.262.365
- R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), no. 4, 425-446. https://doi.org/10.1007/BF01457445
- R. E. Greene and S. G. Krantz, Normal families and the semicontinuity of isometry and automorphism groups, Math. Z. 190 (1985), no. 4, 455-467. https://doi.org/10.1007/BF01214745
- S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 3 (1983), no. 3, 193-260.
- S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, RI, 2001.
- S. G. Krantz, Explorations in Harmonic Analysis, Birkhauser Publishing, Boston, 2009.
- L. Lempert and L. Rubel, An independence result in several complex variables, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1055-1065. https://doi.org/10.1090/S0002-9939-1991-1052577-8