DOI QR코드

DOI QR Code

HYPERBOLIC NOTIONS ON A PLANAR GRAPH OF BOUNDED FACE DEGREE

  • OH, BYUNG-GEUN (DEPARTMENT OF MATHEMATICS EDUCATION HANYANG UNIVERSITY)
  • Received : 2014.09.02
  • Published : 2015.07.31

Abstract

We study the relations between strong isoperimetric inequalities and Gromov hyperbolicity on planar graphs, and give an alternative proof for the following statement: if a planar graph of bounded face degree satisfies a strong isoperimetric inequality, then it is Gromov hyperbolic. This theorem was formerly proved in the author's paper from 2014 [12] using combinatorial methods, while geometric approach is used in the present paper.

Keywords

References

  1. A. D. Aleksandrov and V. A. Zalgaller, Intrinsic Geometry of Surfaces, AMS Transl. Math. Monographs, v. 15, Providence, RI, 1967.
  2. M. Bonk, Quasi-geodesic segments and Gromov hyperbolic spaces, Geom. Dedicata 62 (1996), no. 3, 281-298. https://doi.org/10.1007/BF00181569
  3. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195-199. Princeton Univ. Press, Princeton, N. J., 1970.
  4. M. Coornaert, T. Delzant, and A. Papadopoulos, Geometrie et theorie des groupes, LNM, Vol. 1441, Springer, Berlin, 1990.
  5. E. Ghys and P. de la Harpe (eds.), Sur les Groupes Hyperbolique d'apres Mikhael Gromov, Birkhauser, Boston, MA, 1990.
  6. M. Gromov, Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pp. 183-213, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981.
  7. M. Gromov, Hyperbolic groups, In: Essays in group theory, 75-263, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987.
  8. Z. He and O. Schramm, Hyperbolic and parabolic packings, Discrete Comput. Geom. 14 (1995), no. 2, 123-149. https://doi.org/10.1007/BF02570699
  9. M. Kanai, Rough isometries, and combinatorial approximations of geometries of non-compact Riemannian manifolds, J. Math. Soc. Japan 37 (1985) no. 3, 391-413. https://doi.org/10.2969/jmsj/03730391
  10. B. Oh, Aleksandrov surfaces and hyperbolicity, Trans. Amer. Math. Soc. 357 (2005), no. 11, 4555-4577. https://doi.org/10.1090/S0002-9947-05-03977-2
  11. B. Oh, Linear isoperimetric inequality and Gromov hyperbolicity on Aleksandrov surfaces, J. Chungcheong Math. Soc. 23 (2010), no. 2, 369-381.
  12. B. Oh, Duality properties of strong isoperimetric inequalities on a planar graph and combinatorial curvatures, Discrete Comput. Geom. 51 (2014), no. 4, 859-884. https://doi.org/10.1007/s00454-014-9592-7
  13. Yu. G. Reshetnyak, Two-dimensional manifolds of bounded curvature, In: Geometry IV. Encyclopaedia of Mathematical Sciences (Yu. G. Reshetnyak eds.), pp. 3-163, Vol. 70, Springer, Berlin, 1993.
  14. P. Soardi, Potential Theory on Infinite Networks, LNM 1590, Springer-Verlag, Berlin, 1994.