References
- A. D. Aleksandrov and V. A. Zalgaller, Intrinsic Geometry of Surfaces, AMS Transl. Math. Monographs, v. 15, Providence, RI, 1967.
- M. Bonk, Quasi-geodesic segments and Gromov hyperbolic spaces, Geom. Dedicata 62 (1996), no. 3, 281-298. https://doi.org/10.1007/BF00181569
- J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195-199. Princeton Univ. Press, Princeton, N. J., 1970.
- M. Coornaert, T. Delzant, and A. Papadopoulos, Geometrie et theorie des groupes, LNM, Vol. 1441, Springer, Berlin, 1990.
- E. Ghys and P. de la Harpe (eds.), Sur les Groupes Hyperbolique d'apres Mikhael Gromov, Birkhauser, Boston, MA, 1990.
- M. Gromov, Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pp. 183-213, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981.
- M. Gromov, Hyperbolic groups, In: Essays in group theory, 75-263, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987.
- Z. He and O. Schramm, Hyperbolic and parabolic packings, Discrete Comput. Geom. 14 (1995), no. 2, 123-149. https://doi.org/10.1007/BF02570699
- M. Kanai, Rough isometries, and combinatorial approximations of geometries of non-compact Riemannian manifolds, J. Math. Soc. Japan 37 (1985) no. 3, 391-413. https://doi.org/10.2969/jmsj/03730391
- B. Oh, Aleksandrov surfaces and hyperbolicity, Trans. Amer. Math. Soc. 357 (2005), no. 11, 4555-4577. https://doi.org/10.1090/S0002-9947-05-03977-2
- B. Oh, Linear isoperimetric inequality and Gromov hyperbolicity on Aleksandrov surfaces, J. Chungcheong Math. Soc. 23 (2010), no. 2, 369-381.
- B. Oh, Duality properties of strong isoperimetric inequalities on a planar graph and combinatorial curvatures, Discrete Comput. Geom. 51 (2014), no. 4, 859-884. https://doi.org/10.1007/s00454-014-9592-7
- Yu. G. Reshetnyak, Two-dimensional manifolds of bounded curvature, In: Geometry IV. Encyclopaedia of Mathematical Sciences (Yu. G. Reshetnyak eds.), pp. 3-163, Vol. 70, Springer, Berlin, 1993.
- P. Soardi, Potential Theory on Infinite Networks, LNM 1590, Springer-Verlag, Berlin, 1994.