DOI QR코드

DOI QR Code

Evaluations on the Compaction Energy Effects on the Soil Compaction at Sub-Zero Temperature

영하에서의 다짐에너지에 따른 다짐 효과 평가

  • Lee, Jeonghyeop (Department of Civil & Environmental Engineering, Dankook University) ;
  • Hwang, Bumsik (Department of Civil & Environmental Engineering, Dankook University) ;
  • Chae, Deokho (Department of Civil & Environmental Engineering, Dankook University) ;
  • Cho, Wanjei (Department of Civil & Environmental Engineering, Dankook University)
  • Received : 2015.04.30
  • Accepted : 2015.06.22
  • Published : 2015.08.01

Abstract

Due to the population growth and exhaustion of resource, the development on the harsh environment such as cold weather is emerging as an alternative for new resource development. The permafrost area covers about 14 percent of the world's land area and the global construction market for such area is rapidly expanded. Whereas the developed countries have already recognition of the need for research of coldest place and invested heavily in technology development, the domestic technology for the coldest place development is less developed and related research has rarely been performed. There is not a detailed national specification standard for the strength and deformation properties of the earthworks at sub-zero temperature but simple field directions. Therefore, the D compaction tests were conducted on the sand with fine contents of 0%, 5%, 10% and 15% at room temperature ($18^{\circ}C$), $-3^{\circ}C$ and $-8^{\circ}C$ to investigate the effect of the compaction energy on the compacted soils at sub-zero temperatures. Based on the test results, the larger compaction energy, the larger maximum dry unit weight under sub-zero temperature and D type compaction at $-3^{\circ}C$ show similar max. dry unit weights as those obtained from the compaction at the room temperature. However, compaction at $-8^{\circ}C$ showed significant performance degradation regardless of the compaction energy.

인구가 증가하고 자원이 고갈되면서 새로운 자원개발을 위한 대안으로 극한지 개발이 떠오르고 있다. 전 세계 육지 면적 중 14%가 극한지 지역에 해당되며, 이 지역들의 개발을 위한 해외극지 건설시장이 많이 확대되었다. 이미 선진국들은 극한지 연구의 필요성을 인식하고 기술 개발에 많은 투자를 하고 있는 반면, 우리나라의 경우 극한지 개발을 위한 기술이 선진국에 비해 매우 낮으며 관련 연구 또한 미약한 실정이다. 국내의 동절기 시공의 경우 지반동결에 의한 강도 및 변형특성에 대한 명확한 기준이 마련되어있지 않으며 현장에서의 간단한 지침을 통해서만 관리되고 있다. 따라서 본 연구에서는 상온($18^{\circ}C$), $-3^{\circ}C$, $-8^{\circ}C$에서 세립분 함량을 0%, 5%, 10%, 15%로 변화하면서 D 다짐 시험을 실시하여 영하온도에서의 다짐특성에 대해 살펴보았으며, 기존의 문헌연구와 비교를 통해 영하온도에서의 다짐에너지에 따른 다짐 효과에 대해 평가하였다. 시험 결과 영하온도에서 다짐에너지가 클수록 최대건조단위중량은 증가하는 것으로 나타났으며, $-3^{\circ}C$에서의 D다짐 시험결과는 상온의 결과와 크게 다르지 않으나 $-8^{\circ}C$ 이하에서의 다짐시공 시 다짐성능의 저하가 상당한 것으로 나타났다.

Keywords

References

  1. Andersland, O. B. and Ladanyi, B. (2004), Frozen ground engineering second edition, John Wiley & Sons, Inc., Canada, pp. 24-25.
  2. Ctori, P. (1989), The effects of temperature on the physical properties of cohesive soil, Ground engineering, Vol. 22, No. 5, pp. 26-27.
  3. Haas, W. M., Alkire, B. D. and Kaderabek, T. J. (1978), Increasing the effectiveness of soil compaction at below-freezing temperature, Special Report 78-25, U.S. Army Cold Regions Research and Engineering Laboratory, Directorate of Military Programs Office, Washington, pp. 51-52.
  4. Heiner, A. (1972), Strength and compaction properties of frozen soil, National swedish institute for building research, Sweden, Doc. 11, pp. 71.
  5. Hivon, E. G. and Sego, D. C. (1995), Strength of frozen saline soils, Canadian Geotech Journal, Vol. 32, No. 2, pp. 336-354. https://doi.org/10.1139/t95-034
  6. Hwang, B. S., Chae, D. H., Kim, Y. S. and Cho, W. J. (2015), An experimental study on the effectiveness of soil compaction, Journal of the Korean Geo-Environmental Society, Vol. 16, No. 1, pp. 37-43(in Korean).
  7. Johnson, A. W. and Sallberg, J. R. (1962), Factors influencing compaction test results, Highway Research Board Bulletin, U.S., Vol. 319, pp. 148.
  8. KS F 2302 (2002), Test method for particle size distribution of soils, pp. 1-10 (in Korean).
  9. KS F 2303 (2000), Test method for liquid limit and plastic limit of soils, pp. 1-4 (in Korean).
  10. KS F 2308 (2006), Test method for density of soil particles, pp. 1-4 (in Korean).
  11. KS F 2312 (2001), Test method for soil compaction using a rammer, pp. 1-6 (in Korean).
  12. Park, J. S. (1981), A study on the compaction and permeability of soil, Theses of Taejon Technical Junior College, Vol. 29, pp. 247-254 (in Korean).
  13. Paul, M. A. (1980), The compaction of soil: a geological and geotechnical analysis, Soils Discussion Group, North of England, Vol. 16, pp. 63-82.
  14. Taylor, J. H. and Gill, W. R. (1984), Soil compaction: state-of-the-art report, Journal of Terramechanics, Vol. 21, No. 2, pp. 195-213. https://doi.org/10.1016/0022-4898(84)90021-1
  15. Ting, J. M. (1981), The creep of frozen sand: qualitative and quantitative models, Research Report R81-5, Massachusetts Institute of Technology Dept. of Civil Engineering, Cambridge, pp. 88-102.