DOI QR코드

DOI QR Code

폴리아닐린을 함유한 도전성 복합필름의 제조 및 특성 연구(2)

Characterization of Biodegradable Conductive Composite Films with Polyaniline(2)

  • 이수 (창원대학교 화공시스템공학과) ;
  • 성은숙 (창원대학교 화공시스템공학과)
  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Seong, Eun-Suk (Department of Chemical Engineering, Changwon National University)
  • 투고 : 2015.02.05
  • 심사 : 2015.03.25
  • 발행 : 2015.03.30

초록

생분해성 고분자인 셀룰로오스 아세테이트(CA)를 매트릭스로 용액 중합된 HCl이 50% 정도 도핑된 PAni를 첨가하여 도전성 PCA 복합 필름을 제조하여 기계적, 전기적 특성 및 표면 morphology를 고찰하였다. PCA 복합 필름의 인장강도는 PAni 함유량 5 wt% 인 경우 순수 CA 필름($377.1kg_f/cm^2$)에 비해 27% 정도 감소된 $275.2kg_f/cm^2$를 나타내었으며, 신율도 7.65%에서 4.35% 정도로 감소하였다. 표면저항은 PAni의 함량에 따라 감소하였으며, PAni 함유량이 5 wt%인 PCA05의 경우 $7.0{\times}10^9{\Omega}/sq$로 정전기 방지용 필름으로 사용이 가능할 정도였다. 표면 정전기량의 소멸 속도도 PAni 함량에 따라 비례하여 빨라짐을 확인하였다. PCA 복합 필름의 열적 안정성은 PAni 함량이 늘어남에 따라 분해온도가 낮아졌으며, 최종 재(char)의 함량은 PAni의 함량에 비례하였다. 최종 재의 함량을 이용하여 미지의 PCA 복합 필름 중의 PAni의 분율을 계산할 수 있을 것으로 판단된다.

The 50 mole% HCl doped polyaniline(PAni) was synthesized by polymerization of aniline in the presence of hydrochloric acid and ammonium persulfate(APS) as dopant and oxidant, respectively. Then, conducting biodegradable cellulose acetate composite films were also prepared with PAni in acetone to find their applicability to antistatic packaging materials. The tensile strength of PCA05 film with 5 wt% of PAni was decreased by 27% from $377.1kg_f/cm^2$ for CA film itself to $275.2kg_f/cm^2$. Elongation was also decreased from 7.65% to 4.35%. Surface registance of $7.0{\times}10^9{\Omega}/sq$ could be achieved for the PCA containing 5 wt% of PAni. Therefore, this PCA05 film can be applied to antistatic package film for electronic board. In addition, decomposition temperature of these PCA films obtained by thermogravimetric analysis(TGA) was decreased with the amount of PAni in PCA films, and the final weight of char was directly proportional to PAni contents. From this thermal result we can calculate the content of PAni in unknown PCA films.

키워드

참고문헌

  1. General Electric, WO2004040590 A2, Conductive thermoplastic composites and methods of making (2004).
  2. Korea Univ., WO2012115344 A1, Electrically conductive polymer/filler composite, and method for preparing same (2012).
  3. Dongjin Semichem Co., Ltd, WO2013137654 A1, Metal-plate graphene powder, and electromagnetic interference shielding coating composition containing same (2013).
  4. L. Nayak, R. R. Pradhan, D. Khastgir, and T. K. Chaki, Thermally stable electromagnetic interference shielding material from polysulfone nanocomposites: Comparison on carbon nanotube and nanofiber reinforcement, Polymer Composite, Article first published online: 27 March, 2014 (2014).
  5. T. K. Gupta, B. P. Singh, R. B. Mathur, and S, R. Dhakate, Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness, Nanoscale, 6, 842-851 (2014). https://doi.org/10.1039/C3NR04565J
  6. M. S. Ruslan, S. P. Chew, M. Sharif, A. A. Azid, and A. Yusof, EMI Shielding Effectiveness of Polyvinyl Chloride and Carbon Fiber Composites in Building Construction, Advanced Materials Research, 895, 452-459 (2014). https://doi.org/10.4028/www.scientific.net/AMR.895.452
  7. J. A. Marins, B. G. Soares, M. Fraga, D. Muller, and G. M. O. Barra, Self-supported bacterial cellulose polyaniline conducting membrane as electromagnetic interference shielding material: effect of the oxidizing agent, Cellulose, 21(3), 1409-1418 (2014). https://doi.org/10.1007/s10570-014-0191-9
  8. J. Jang and H. Yoon, Recent Progress in the Development of State-of-the Art Sensors Based on Conducting Polymer Nanomaterials, Polymer Science and Technology, 18(4), 306-310 (2007). https://doi.org/10.1002/pat.886
  9. W. Lu, X. S. Meng, and Y. Wang, Electrochemical behavior of a new electroactive polyimide derived from aniline trimer, J. Polym. Sci.; Part A; Polym. Chem., 37, 4295 (1999). https://doi.org/10.1002/(SICI)1099-0518(19991201)37:23<4295::AID-POLA5>3.0.CO;2-X
  10. H.-Q. Xie, Y.-M. Ma, and J.-S. Guo, Conductive polyaniline-SBS composites from in situ emulsion polymerization, Polymer, 40, 261 (1998).
  11. M. S. Ha, J. M. Jung, Charged Cable Model ESD Damage to ECU, Transactions of KSAE, 21(2), 159-165 (2013).
  12. J. E. Vinson and J. J. Liou, Electrostatic Discharge in Semiconductor Devices: An Overview, Proc. of The IEEE, 86(2), 399-420 (1998). https://doi.org/10.1109/5.659493
  13. EIA 541, Packaging Material Standards For Esd Sensitive Items, Joint Electronics Device Engineering Council (JEDEC), (1988).
  14. J. K. Lee, Webzine of Electromagnetic Wave Techology Institute, 17, 5-16 (2011).
  15. N. Jonassen, "Electrostatics", 2nd ed., Springer-Verlag, New York, NY, pp. 1-186 (2012).
  16. ASTM D4470-97 Standard Test Method for Static Electrification (2010).

피인용 문헌

  1. Additional Solvent Ionizing Power Values for Binary Water- 1,1,1,3,3,3-Hexafluoro-2-propanol Solvents vol.7, pp.10, 2006, https://doi.org/10.3390/i7100451
  2. Correlation of the rates of solvolysis of acetyl chloride and α-substituted derivatives vol.86, pp.5, 2008, https://doi.org/10.1139/v08-028
  3. Correlation analysis of the rates of solvolysis of 4-bromopiperidine: A reaction following a Grob fragmentation pathway vol.8, pp.2, 2017, https://doi.org/10.5155/eurjchem.8.2.162-167.1566
  4. Rate and product studies in the solvolyses of methanesulfonic anhydride and a comparison with methanesulfonyl chloride solvolyses vol.20, pp.6, 2007, https://doi.org/10.1002/poc.1168
  5. Correlation of the Rates of Solvolysis of Two Arenesulfonyl Chlorides and of trans-β-Styrenesulfonyl Chloride — Precursors in the Development of New Pharmaceuticals vol.9, pp.12, 2008, https://doi.org/10.3390/ijms9122639
  6. Rate and Product Studies in the Solvolyses of Two Arenesulfonic Anhydrides vol.2007, pp.6, 2015, https://doi.org/10.3184/030823407x218084
  7. Reaction Mechanism Studies Involving the Correlation of the Rates of Solvolysis of Benzoyl and P-Nitrobenzoyl P-Toluenesulfonates vol.38, pp.7, 2015, https://doi.org/10.3184/174751914x14018022669011
  8. Correlation of the Rates of Solvolysis of 2,1-Benzoxathiol-3-One-1, 1-dioxide (2-Sulfobenzoic Acid Cyclic Anhydride) vol.39, pp.10, 2015, https://doi.org/10.3184/174751915x14412072517781