DOI QR코드

DOI QR Code

수중 채널 환경에서 전송량 증대를 위한 다중반송파 시스템에 관한 연구

A Study on the Multi-Carrier System for Throughput Enhancement in Underwater Channel Environments

  • Kim, Min-sang (Hoseo University Department of Information and Telecommunication Eng.) ;
  • Cho, Dae-young (Hoseo University Department of Information and Telecommunication Eng.) ;
  • Ko, Hak-lim (Hoseo University Department of Information and Telecommunication Eng.) ;
  • Hong, Dae-Ki (Sangmyung University Department of Information and Telecommunication Eng.) ;
  • Kim, Seung-geun (Korea Research Institute of Ships and Ocean Eng.(KRISO)) ;
  • Im, Tae-ho (Hoseo University Department of Oceanic IT Eng.)
  • 투고 : 2015.05.21
  • 심사 : 2015.06.16
  • 발행 : 2015.06.30

초록

최근 수중음향통신이 다양한 분야에 활용되면서 고속 데이터 전송의 요구가 증가함에 따라 수중음향통신 시스템에 OFDM(Orthogonal Frequency Division Multiplexing)과 FMT(Filtered Multi-Tone)와 같은 다중반송파 방식을 적용하는 연구가 활발히 진행 중이다. 기존 OFDM 방식은 주파수 영역에서 인접채널에 영향을 주지 않기 위해 삽입하는 가상 부반송파(virtual carrier)의 사용과 인접 심볼 간 간섭(Inter Symbol Interference) 및 인접 채널간 간섭(Inter Channel Interference)의 영향을 줄이기 위해 사용하는 순환전치(cyclic prefix)는 전송량을 감소시킨다. 특히 수중은 육상에 비하여 급격히 변화하는 채널 특성을 갖기 때문에 사용해야하는 순환전치 길이가 길어지며, 가상 부반송파에 더 많은 부반송파를 할당해야 하므로 데이터의 전송량이 저하된다. 따라서 본 연구에서는 수중 채널 환경에서 전송량 증대를 위한 OFDM 시스템과 FMT 시스템을 결합한 FMT-OFDM 시스템을 제안하며, 실해역에서 측정한 데이터를 기반으로 채널을 모델링하고 시스템 파라미터를 설정 후 성능을 분석하였다.

Studies applying multiple carrier method such as OFDM(Orthogonal Frequency Division Multiplexing) or FMT(Filtered Multi-Tone) to Underwater acoustic communication(UAC) system are actively under way as UAC is utilized in the various fields and the demand of high speed data transmission increases. In the existing OFDM method, the use of virtual carrier, which is inserted not to affect the adjacent channel in the frequency domain, and the cyclic prefix, which is used to reduce the impact of Inter Symbol Interference and Inter Channel Interference, decrease the throughput. In particular, the length of cyclic prefix to be used becomes longer under water since underwater has a rapidly changing channel characteristic, and the data throughput diminishes because it has to allocate more subcarrier on virtual carrier. This study therefore suggests FMT-OFDM system, a combination of OFDM and FMT, for the purpose of enhanced throughput in the underwater channel environment. Besides, in this study, channel is modeled based on data measured in real sea and the performance is analyzed after setting system parameters.

키워드

참고문헌

  1. D. S. Lee, S. M. Lee, and S. J. Park "DSP-Based micro-modem for underwater acoustic communications," J. KICS, vol. 39C, no. 3, pp. 275-281, Mar. 2015.
  2. K. C. Cho, "Performance analysis of the pre-equalizer system for the OFDM system," J. KICS, vol. 39B, no. 12, pp. 864-869, Dec. 2014. https://doi.org/10.7840/kics.2014.39B.12.864
  3. Y. S. Cho, J. K. Kim, and W. Y. Yang, MIMO-OFDM wireless communications with matlab, Hongrung publishing company, pp. 179-182, 2012.
  4. M. S. Kim, D. Y. Cho, and H. L. Ko, "Analysis on the correlation coefficient for the diversity technique combined with beamforming using measurement data in underwater channel environments," J. KICS, vol. 37A, pp. 1023-1030, Dec. 2012. https://doi.org/10.7840/kics.2012.37A.12.1023
  5. S. J. Park, S. R. Kim, and Y. H. Yoo, "DTN routing protocol utilizing underwater channel properties in underwater wireless sensor networks," J. KICS, vol. 39B, no. 10, pp. 645- 653, Oct. 2014. https://doi.org/10.7840/kics.2014.39B.10.645
  6. D. Y. Cho, "A study on the improvement of performance in beamforming-based low power communication system," Doc. Thesis, Inf. and Telecommun. Eng., Hoseo Univ., Dec. 2014.
  7. G. Leus, "Covert underwater communications with multiband OFDM," IEEE OCEANS 2008, pp. 1-8, Quebec City, Sept. 2008.
  8. T. L. Fan, H. W. Wu, and H. C. Huang "Channel estimation and interference cancellation for OFDM systems based on total least squares solution," ETP J. Commun., vol. 6, no. 8, pp. 1-8, Nov. 2011.
  9. Part 11: IEEE 802.11a. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE 802.11a-1999, 1999.
  10. Part 11 : IEEE 802.11n. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11n-2009, 2009.

피인용 문헌

  1. 이기종 네트워크를 위한 다중 셀 검출 기법 vol.41, pp.4, 2015, https://doi.org/10.7840/kics.2016.41.4.395
  2. 직교 주파수 분할 다중화 시스템을 위한 기준 신호 기반 미세 시간 동기 vol.41, pp.9, 2015, https://doi.org/10.7840/kics.2016.41.9.1038