과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China
참고문헌
- Amick, H. (1997), "On the generic vibration criteria for advanced technology facilities", J. Inst. Environ. Sci,, 40, 35-44.
- Bellan, C. and Bossis, G. (2002), "Field dependence of viscoelastic properties of MR elastomers", Int. J. Modern Phys. - B, 16(17-18), 2447-2453. https://doi.org/10.1142/S0217979202012499
- Bose, H. (2007), "Viscoelastic properties of silicone-based magnetorheological elastomers", Int. J. Modern Phys. - B, 21(28-29), 4790-4797. https://doi.org/10.1142/S0217979207045670
- Carlson, J.D. and Jolly, M.R. (2000), "MR fluid, foam and elastomer devices", Mechatronics, 10(4-5), 555-569. https://doi.org/10.1016/S0957-4158(99)00064-1
- Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures -theory and application: a review of recent advances", J. Intel.Mat. Syst. Str., 23, 1181-1195. https://doi.org/10.1177/1045389X12445029
- Choi, W.J., Xiong, Y.P. and Shenoi, R.A. (2010), "Vibration characteristics of sandwich beam with steel skins and magnetorheological elastomer cores", Adv. Struct. Eng., 13, 837-847. https://doi.org/10.1260/1369-4332.13.5.837
- Demchuk, S.A. and Kuz'min, V.A. (2002), "Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation", J. Eng. Phys. Thermophysics, 75(2), 396-400. https://doi.org/10.1023/A:1015697723112
- Ditaranto, R.A. (1965), "Theory of the vibratory bending for elastic and viscoelastic layered finite-length beams", J. Appl. Mech. - ASME, 32(4), 881-886. https://doi.org/10.1115/1.3627330
- Dwivedy, S.K., Mahendra, N. and Sahu, K.C. (2009), "Parametric instability regions of a soft and magnetorheological elastomer cored sandwich beam", J. Sound Vib., 325(4-5), 686-704. https://doi.org/10.1016/j.jsv.2009.03.039
- Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
- Frostig, Y. and Baruch, M. (1994), "Free vibrations of sandwich beams with a transversely flexible core: a high order approach", J. Sound Vib., 176(2), 195-208. https://doi.org/10.1006/jsvi.1994.1368
- Ginder, J.M., Clark, S.M., Schlotter, W.F. and Nichols, M.E. (2002), "Magnetostrictive phenomena in magneto-rheological elastomers", Int. J. Modern Phys. - B, 16(17-18), 2412-2418. https://doi.org/10.1142/S021797920201244X
- Gong, X.L., Zhang, X.Z. and Zhang, P.Q. (2005), "Fabrication and characterization of isotropic magnetorheological elastomers", Polymer Testing, 24(5), 669-676. https://doi.org/10.1016/j.polymertesting.2005.03.015
- Gordon, C.G. (1991), "Generic criteria for vibration-sensitive equipment", Proceedings of the SPIE, 1619, 71-85.
- Guan, X.C., Huang, Y.H., Li, H. and Ou, J.P. (2012), "Adaptive MR damper cable control system based on piezoelectric power harvesting", Smart Struct. Syst., 10(1), 33-46. https://doi.org/10.12989/sss.2012.10.1.033
- Hasheminejad, S.M. and Shabanimotlagh, M. (2010), "Magnetic-field-dependent sound transmission properties of magnetorheological elastomer-based adaptive panels", Smart Mater. Struct., 19(3), 035006. https://doi.org/10.1088/0964-1726/19/3/035006
- Hoang, N., Zhang, N. and Du, H. (2011), "An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction", Smart Mater. Struct., 20(1), 015019. https://doi.org/10.1088/0964-1726/20/1/015019
- Hu, W. and Wereley, N.M. (2008), "Hybrid magnetorheological fluid-elastomeric lag dampers for helicopter stability augmentation", Smart Mater. Struct., 17(4), 045021. https://doi.org/10.1088/0964-1726/17/4/045021
- Hwang, J.S., Huang, Y.N., Hung, Y.H. and Huang, J.C. (2004), "Applicability of seismic protective systems to structures with vibration-sensitive equipment", J. Struct. Eng. - ASCE, 130(11), 1676-1684. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1676)
- Jung, H.J., Eem, S.H., Jang, D.D. and Koo, J.H. (2011), "Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers", J. Intel. Mat. Syst. Str., 22, 1439-1450. https://doi.org/10.1177/1045389X11414224
- Kallio, M., Lindroos, T., Aalto, S., Jarvinen, E., Karna, T. and Meinander, T. (2007), "Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer", Smart Mater. Struct., 16(2), 506-514. https://doi.org/10.1088/0964-1726/16/2/032
- Koo, J.H., Khan, F., Jang, D.D. and Jung, H.J. (2010), "Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings", Smart Mater. Struct., 19(11), 117002. https://doi.org/10.1088/0964-1726/19/11/117002
- Lee, C.L., Su, R.K.L. and Wang, Y.P. (2013), "AGV-induced floor micro-vibration assessment in LCD factories by using a regressional modified Kanai-Tajimi moving force model", Struct. Eng. Mech., 45(4), 543-658. https://doi.org/10.12989/sem.2013.45.4.543
- Mead, D.J. (1972), "The damping properties of elastically supported sandwich plates", J. Sound Vib., 24(3), 275-295. https://doi.org/10.1016/0022-460X(72)90745-6
- Mead, D.J. and Markus, S. (1969), "The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions", J. Sound Vib., 10(2), 163-175. https://doi.org/10.1016/0022-460X(69)90193-X
- Nakamura, Y., Nakayama, M., Masuda, K., Tanaka, K., Yasuda, M. and Fujita, T. (2000), "Development of active six-degree-of-freedom microvibration control system using giant magnetostrictive actuators", Smart Mater. Struct., 9(2), 175-185. https://doi.org/10.1088/0964-1726/9/2/308
- Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2013), "Vibration analysis of a three-layer magnetorheological elastomer embedded sandwich beam with conductive skins using finite element method", Proc. IME, J. Mech.Eng.Sci., 227(4), 714-729. https://doi.org/10.1177/0954406212451812
- Ni, Y.Q., Ying, Z.G. and Chen, Z.H. (2011), "Micro-vibration suppression of equipment supported on a floor incorporating magneto-rheological elastomer core", J. Sound Vib., 330(18-19), 4369-4383. https://doi.org/10.1016/j.jsv.2011.04.020
- Nikitin, L.V. and Samus, A.N. (2005), "Magnetoelastics and their properties", Int. J. Modern Phys. - B, 19(7-9), 1360-1366. https://doi.org/10.1142/S021797920503030X
- Schoeftner, J. and Buchberger, G. (2013), "Active shape control of a cantilever by resistively interconnected piezoelectric patches", Smart Struct. Syst., 12(5), 501-521. https://doi.org/10.12989/sss.2013.12.5.501
- Shen, Y., Golnaraghi, M.F. and Heppler, G.R. (2004), "Experimental research and modeling of magnetorheological elastomers", J. Intel. Mat. Syst. Str., 15(1), 27-35. https://doi.org/10.1177/1045389X04039264
- Shiga, T., Okada, A. and Kurauchi, T. (1995), "Magnetoviscoelastic behavior of composite gels", J. Appl. Polymer Sci., 58(4), 787-792. https://doi.org/10.1002/app.1995.070580411
- Spencer, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Eng. Mech. - ASCE, 129(7), 845-856.
- Symans, M.D. and Constantinou, M.C. (1999), "Semi-active control systems for seismic protection of structures: a state-of-the-art review", Eng. Struct., 21(6), 469-487. https://doi.org/10.1016/S0141-0296(97)00225-3
- Wang, D.H. and Liao, W.H. (2011), "Magnetorheological fluid dampers: a review of parametric modeling", Smart Mater. Struct., 20(2), 023001. https://doi.org/10.1088/0964-1726/20/2/023001
- Xu, Y.L., Yang, Z.C., Chen, J., Liu, H.J. and Chen, J. (2003), "Microvibration control platform for high technological facilities subject to traffic-induced ground motion", Eng. Struct., 25(8), 1069-1082. https://doi.org/10.1016/S0141-0296(03)00049-X
- Yan, M.J. and Dowell, E.H. (1972), "Governing equations for vibrating constrained-layer damping sandwich plates and beams", J. Appl. Mech. - ASME, 94, 1041-1046.
- Yang, J.N. and Agrawal, A.K. (2000), "Protective systems for high-technological facilities against microvibration and earthquake", Struct. Eng. Mech., 10(6), 561-575. https://doi.org/10.12989/sem.2000.10.6.561
- Yeh, J.Y. (2013), "Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment", Smart Mater. Struct., 22, 035010. https://doi.org/10.1088/0964-1726/22/3/035010
- Ying, Z.G. and Ni, Y.Q. (2009), "Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass", Smart Mater. Struct., 18(9), 095005. https://doi.org/10.1088/0964-1726/18/9/095005
- Ying, Z.G., Ni, Y.Q. and Sajjadi, M. (2013), "Nonlinear dynamic characteristics of magneto-rheological visco-elastomers", Science China, Technological Sciences, 56(4), 878-883. https://doi.org/10.1007/s11431-013-5168-7
- Ying, Z.G., Ni, Y.Q. and Ye, S.Q. (2014), "Stochastic micro-vibration suppression of a sandwich plate using a magneto-rheological visco-elastomer core", Smart Mater. Struct., 23(2), 025019. https://doi.org/10.1088/0964-1726/23/2/025019
- York, D., Wang, X. and Gordaninejad, F. (2007), "A new MR fluid-elastomer vibration isolator", J. Intel. Mater. Syst. Str., 18, 1221-1225. https://doi.org/10.1177/1045389X07083622
- Yoshioka, H., Takahashi, Y., Katayama, K., Imazawa, T. and Murai, N. (2001), "An active microvibration isolation system for hi-tech manufacturing facilities", J. Vib. Acoust., 123(2), 269-275. https://doi.org/10.1115/1.1350566
- Zenz, G., Berger, W., Gerstmayr, J., Nader, M. and Krommer, M. (2013), "Design of piezoelectric transducer arrays for passive and active modal control of thin plates", Smart Struct. Syst., 12(5), 547-577. https://doi.org/10.12989/sss.2013.12.5.547
- Zhou, G.Y. and Wang, Q. (2005), "Magnetorheological elastomer-based smart sandwich beams with nonconduction skins", Smart Mater. Struct., 14(5), 1001-1009. https://doi.org/10.1088/0964-1726/14/5/038
- Zhou, G.Y. and Wang, Q. (2006), "Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams", Smart Mater. Struct., 15(1), 59-74. https://doi.org/10.1088/0964-1726/15/1/035
피인용 문헌
- Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter vol.90, pp.1, 2017, https://doi.org/10.1007/s11071-017-3650-7
- Advances in structural vibration control application of magneto-rheological visco-elastomer vol.7, pp.2, 2017, https://doi.org/10.1016/j.taml.2017.01.003
- Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM vol.18, pp.5, 2016, https://doi.org/10.12989/sss.2016.18.5.1029
- Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
- Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core vol.19, pp.1, 2015, https://doi.org/10.12989/sss.2017.19.1.021
- Stress dependent relaxation time in large deformation vol.61, pp.3, 2015, https://doi.org/10.12989/sem.2017.61.3.317
- Stochastic vibration response of a sandwich beam with nonlinear adjustable visco-elastomer core and supported mass vol.64, pp.2, 2017, https://doi.org/10.12989/sem.2017.64.2.259
- Computational analysis of three dimensional steel frame structures through different stiffening members vol.35, pp.2, 2015, https://doi.org/10.12989/scs.2020.35.2.187