DOI QR코드

DOI QR Code

Stochastic micro-vibration response characteristics of a sandwich plate with MR visco-elastomer core and mass

  • Ying, Z.G. (Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University) ;
  • Ni, Y.Q. (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Duan, Y.F. (Department of Civil Engineering, College of Civil Engineering and Architecture, Zhejiang University)
  • Received : 2014.07.24
  • Accepted : 2014.09.03
  • Published : 2015.07.25

Abstract

The magneto-rheological visco-elastomer (MRVE) is used as a smart core to control the stochastic micro-vibration of a sandwich plate with supported mass. The micro-vibration response of the sandwich plate with MRVE core and supported mass under stochastic support motion excitations is studied and compared to evaluate the vibration suppression capability. The effects of the supported mass and localized magnetic field on the stochastic micro-vibration response of the MRVE sandwich plate are taken into account. The dynamic characteristics of the MRVE core in micro-vibration are described by a non-homogeneous complex modulus dependent on vibration frequency and controllable by applied magnetic fields. The partial differential equations for the coupled transverse and longitudinal motions of the MRVE sandwich plate with supported mass are derived from the dynamic equilibrium, constitutive and geometric relations. The simplified ordinary differential equations are obtained for the transverse vibration of the MRVE sandwich plate under localized magnetic fields. A frequency-domain solution method for the stochastic micro-vibration response of sandwich plates with supported mass is developed based on the Galerkin method and random vibration theory. The expressions of frequency-response functions, response power spectral densities and root-mean-square velocity responses of the plate in terms of the one-third octave frequency band are obtained for micro-vibration evaluation. Finally, numerical results are given to illustrate the large response reduction capacity of the MRVE sandwich plate with supported mass under stochastic support motion excitations, and the influences of MRVE parameters, supported mass and localized magnetic field placement on the micro-vibration response.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China

References

  1. Amick, H. (1997), "On the generic vibration criteria for advanced technology facilities", J. Inst. Environ. Sci,, 40, 35-44.
  2. Bellan, C. and Bossis, G. (2002), "Field dependence of viscoelastic properties of MR elastomers", Int. J. Modern Phys. - B, 16(17-18), 2447-2453. https://doi.org/10.1142/S0217979202012499
  3. Bose, H. (2007), "Viscoelastic properties of silicone-based magnetorheological elastomers", Int. J. Modern Phys. - B, 21(28-29), 4790-4797. https://doi.org/10.1142/S0217979207045670
  4. Carlson, J.D. and Jolly, M.R. (2000), "MR fluid, foam and elastomer devices", Mechatronics, 10(4-5), 555-569. https://doi.org/10.1016/S0957-4158(99)00064-1
  5. Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures -theory and application: a review of recent advances", J. Intel.Mat. Syst. Str., 23, 1181-1195. https://doi.org/10.1177/1045389X12445029
  6. Choi, W.J., Xiong, Y.P. and Shenoi, R.A. (2010), "Vibration characteristics of sandwich beam with steel skins and magnetorheological elastomer cores", Adv. Struct. Eng., 13, 837-847. https://doi.org/10.1260/1369-4332.13.5.837
  7. Demchuk, S.A. and Kuz'min, V.A. (2002), "Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation", J. Eng. Phys. Thermophysics, 75(2), 396-400. https://doi.org/10.1023/A:1015697723112
  8. Ditaranto, R.A. (1965), "Theory of the vibratory bending for elastic and viscoelastic layered finite-length beams", J. Appl. Mech. - ASME, 32(4), 881-886. https://doi.org/10.1115/1.3627330
  9. Dwivedy, S.K., Mahendra, N. and Sahu, K.C. (2009), "Parametric instability regions of a soft and magnetorheological elastomer cored sandwich beam", J. Sound Vib., 325(4-5), 686-704. https://doi.org/10.1016/j.jsv.2009.03.039
  10. Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
  11. Frostig, Y. and Baruch, M. (1994), "Free vibrations of sandwich beams with a transversely flexible core: a high order approach", J. Sound Vib., 176(2), 195-208. https://doi.org/10.1006/jsvi.1994.1368
  12. Ginder, J.M., Clark, S.M., Schlotter, W.F. and Nichols, M.E. (2002), "Magnetostrictive phenomena in magneto-rheological elastomers", Int. J. Modern Phys. - B, 16(17-18), 2412-2418. https://doi.org/10.1142/S021797920201244X
  13. Gong, X.L., Zhang, X.Z. and Zhang, P.Q. (2005), "Fabrication and characterization of isotropic magnetorheological elastomers", Polymer Testing, 24(5), 669-676. https://doi.org/10.1016/j.polymertesting.2005.03.015
  14. Gordon, C.G. (1991), "Generic criteria for vibration-sensitive equipment", Proceedings of the SPIE, 1619, 71-85.
  15. Guan, X.C., Huang, Y.H., Li, H. and Ou, J.P. (2012), "Adaptive MR damper cable control system based on piezoelectric power harvesting", Smart Struct. Syst., 10(1), 33-46. https://doi.org/10.12989/sss.2012.10.1.033
  16. Hasheminejad, S.M. and Shabanimotlagh, M. (2010), "Magnetic-field-dependent sound transmission properties of magnetorheological elastomer-based adaptive panels", Smart Mater. Struct., 19(3), 035006. https://doi.org/10.1088/0964-1726/19/3/035006
  17. Hoang, N., Zhang, N. and Du, H. (2011), "An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction", Smart Mater. Struct., 20(1), 015019. https://doi.org/10.1088/0964-1726/20/1/015019
  18. Hu, W. and Wereley, N.M. (2008), "Hybrid magnetorheological fluid-elastomeric lag dampers for helicopter stability augmentation", Smart Mater. Struct., 17(4), 045021. https://doi.org/10.1088/0964-1726/17/4/045021
  19. Hwang, J.S., Huang, Y.N., Hung, Y.H. and Huang, J.C. (2004), "Applicability of seismic protective systems to structures with vibration-sensitive equipment", J. Struct. Eng. - ASCE, 130(11), 1676-1684. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1676)
  20. Jung, H.J., Eem, S.H., Jang, D.D. and Koo, J.H. (2011), "Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers", J. Intel. Mat. Syst. Str., 22, 1439-1450. https://doi.org/10.1177/1045389X11414224
  21. Kallio, M., Lindroos, T., Aalto, S., Jarvinen, E., Karna, T. and Meinander, T. (2007), "Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer", Smart Mater. Struct., 16(2), 506-514. https://doi.org/10.1088/0964-1726/16/2/032
  22. Koo, J.H., Khan, F., Jang, D.D. and Jung, H.J. (2010), "Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings", Smart Mater. Struct., 19(11), 117002. https://doi.org/10.1088/0964-1726/19/11/117002
  23. Lee, C.L., Su, R.K.L. and Wang, Y.P. (2013), "AGV-induced floor micro-vibration assessment in LCD factories by using a regressional modified Kanai-Tajimi moving force model", Struct. Eng. Mech., 45(4), 543-658. https://doi.org/10.12989/sem.2013.45.4.543
  24. Mead, D.J. (1972), "The damping properties of elastically supported sandwich plates", J. Sound Vib., 24(3), 275-295. https://doi.org/10.1016/0022-460X(72)90745-6
  25. Mead, D.J. and Markus, S. (1969), "The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions", J. Sound Vib., 10(2), 163-175. https://doi.org/10.1016/0022-460X(69)90193-X
  26. Nakamura, Y., Nakayama, M., Masuda, K., Tanaka, K., Yasuda, M. and Fujita, T. (2000), "Development of active six-degree-of-freedom microvibration control system using giant magnetostrictive actuators", Smart Mater. Struct., 9(2), 175-185. https://doi.org/10.1088/0964-1726/9/2/308
  27. Nayak, B., Dwivedy, S.K. and Murthy, K.S.R.K. (2013), "Vibration analysis of a three-layer magnetorheological elastomer embedded sandwich beam with conductive skins using finite element method", Proc. IME, J. Mech.Eng.Sci., 227(4), 714-729. https://doi.org/10.1177/0954406212451812
  28. Ni, Y.Q., Ying, Z.G. and Chen, Z.H. (2011), "Micro-vibration suppression of equipment supported on a floor incorporating magneto-rheological elastomer core", J. Sound Vib., 330(18-19), 4369-4383. https://doi.org/10.1016/j.jsv.2011.04.020
  29. Nikitin, L.V. and Samus, A.N. (2005), "Magnetoelastics and their properties", Int. J. Modern Phys. - B, 19(7-9), 1360-1366. https://doi.org/10.1142/S021797920503030X
  30. Schoeftner, J. and Buchberger, G. (2013), "Active shape control of a cantilever by resistively interconnected piezoelectric patches", Smart Struct. Syst., 12(5), 501-521. https://doi.org/10.12989/sss.2013.12.5.501
  31. Shen, Y., Golnaraghi, M.F. and Heppler, G.R. (2004), "Experimental research and modeling of magnetorheological elastomers", J. Intel. Mat. Syst. Str., 15(1), 27-35. https://doi.org/10.1177/1045389X04039264
  32. Shiga, T., Okada, A. and Kurauchi, T. (1995), "Magnetoviscoelastic behavior of composite gels", J. Appl. Polymer Sci., 58(4), 787-792. https://doi.org/10.1002/app.1995.070580411
  33. Spencer, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Eng. Mech. - ASCE, 129(7), 845-856.
  34. Symans, M.D. and Constantinou, M.C. (1999), "Semi-active control systems for seismic protection of structures: a state-of-the-art review", Eng. Struct., 21(6), 469-487. https://doi.org/10.1016/S0141-0296(97)00225-3
  35. Wang, D.H. and Liao, W.H. (2011), "Magnetorheological fluid dampers: a review of parametric modeling", Smart Mater. Struct., 20(2), 023001. https://doi.org/10.1088/0964-1726/20/2/023001
  36. Xu, Y.L., Yang, Z.C., Chen, J., Liu, H.J. and Chen, J. (2003), "Microvibration control platform for high technological facilities subject to traffic-induced ground motion", Eng. Struct., 25(8), 1069-1082. https://doi.org/10.1016/S0141-0296(03)00049-X
  37. Yan, M.J. and Dowell, E.H. (1972), "Governing equations for vibrating constrained-layer damping sandwich plates and beams", J. Appl. Mech. - ASME, 94, 1041-1046.
  38. Yang, J.N. and Agrawal, A.K. (2000), "Protective systems for high-technological facilities against microvibration and earthquake", Struct. Eng. Mech., 10(6), 561-575. https://doi.org/10.12989/sem.2000.10.6.561
  39. Yeh, J.Y. (2013), "Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment", Smart Mater. Struct., 22, 035010. https://doi.org/10.1088/0964-1726/22/3/035010
  40. Ying, Z.G. and Ni, Y.Q. (2009), "Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass", Smart Mater. Struct., 18(9), 095005. https://doi.org/10.1088/0964-1726/18/9/095005
  41. Ying, Z.G., Ni, Y.Q. and Sajjadi, M. (2013), "Nonlinear dynamic characteristics of magneto-rheological visco-elastomers", Science China, Technological Sciences, 56(4), 878-883. https://doi.org/10.1007/s11431-013-5168-7
  42. Ying, Z.G., Ni, Y.Q. and Ye, S.Q. (2014), "Stochastic micro-vibration suppression of a sandwich plate using a magneto-rheological visco-elastomer core", Smart Mater. Struct., 23(2), 025019. https://doi.org/10.1088/0964-1726/23/2/025019
  43. York, D., Wang, X. and Gordaninejad, F. (2007), "A new MR fluid-elastomer vibration isolator", J. Intel. Mater. Syst. Str., 18, 1221-1225. https://doi.org/10.1177/1045389X07083622
  44. Yoshioka, H., Takahashi, Y., Katayama, K., Imazawa, T. and Murai, N. (2001), "An active microvibration isolation system for hi-tech manufacturing facilities", J. Vib. Acoust., 123(2), 269-275. https://doi.org/10.1115/1.1350566
  45. Zenz, G., Berger, W., Gerstmayr, J., Nader, M. and Krommer, M. (2013), "Design of piezoelectric transducer arrays for passive and active modal control of thin plates", Smart Struct. Syst., 12(5), 547-577. https://doi.org/10.12989/sss.2013.12.5.547
  46. Zhou, G.Y. and Wang, Q. (2005), "Magnetorheological elastomer-based smart sandwich beams with nonconduction skins", Smart Mater. Struct., 14(5), 1001-1009. https://doi.org/10.1088/0964-1726/14/5/038
  47. Zhou, G.Y. and Wang, Q. (2006), "Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams", Smart Mater. Struct., 15(1), 59-74. https://doi.org/10.1088/0964-1726/15/1/035

Cited by

  1. Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter vol.90, pp.1, 2017, https://doi.org/10.1007/s11071-017-3650-7
  2. Advances in structural vibration control application of magneto-rheological visco-elastomer vol.7, pp.2, 2017, https://doi.org/10.1016/j.taml.2017.01.003
  3. Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM vol.18, pp.5, 2016, https://doi.org/10.12989/sss.2016.18.5.1029
  4. Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
  5. Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core vol.19, pp.1, 2015, https://doi.org/10.12989/sss.2017.19.1.021
  6. Stress dependent relaxation time in large deformation vol.61, pp.3, 2015, https://doi.org/10.12989/sem.2017.61.3.317
  7. Stochastic vibration response of a sandwich beam with nonlinear adjustable visco-elastomer core and supported mass vol.64, pp.2, 2017, https://doi.org/10.12989/sem.2017.64.2.259
  8. Computational analysis of three dimensional steel frame structures through different stiffening members vol.35, pp.2, 2015, https://doi.org/10.12989/scs.2020.35.2.187