DOI QR코드

DOI QR Code

변칙 사례에 대한 과학 영재 학생들의 반응에서 드러난 인식론적 프레이밍과 소집단 논변활동 탐색

Exploring Small Group Argumentation and Epistemological Framing of Gifted Science Students as Revealed by the Analysis of Their Responses to Anomalous Data

  • 투고 : 2015.04.22
  • 심사 : 2015.06.08
  • 발행 : 2015.06.30

초록

이 연구에서는 과학적 논변활동에서 드러나는 학생들의 인식론적 프레이밍을 확인하고, 소집단 구성원들의 프레이밍 사이의 상호작용이 논변활동에 어떠한 영향을 미치는지를 탐구하였다. 21명의 과학영재 학생들이 세 명 혹은 네 명이 한 집단을 이루어 연구에 참여하였고 학생들이 광합성 속도에 대한 탐구 데이터를 해석하는 논의 과정이 분석되었다. 학생들의 활동은 소집단별로 녹화되었고 학생들의 담화 전사본과 행동이 분석 자료로 활용되었다. 탐구 과정에서 변칙 사례에 반응하는 학생들의 발화 및 행동을 분석하여 그들의 인식론적 프레이밍을 확인하였고 주장에 대한 정당화의 근거와 소집단 논변활동 수준이 분석되었다. 연구 결과, 학생들은 탐구에 대해 '현상 이해'와 '교실 게임'이라는 두 가지 방식의 프레이밍을 보였다. 구성원들이 '현상 이해'의 프레이밍을 보인 경우에는 다른 구성원들에게 데이터의 신뢰성과 타당성 점검을 통해 변칙 사례의 원인을 정당화할 것을 요구하였으며, 이는 높은 수준의 논변활동으로 나타났다. 반대로 구성원들이 '교실 게임'에 해당하는 프레이밍을 보인 경우에는 변칙 사례를 설명할 필요성을 인식하지 않았고, 단순한 경험적 근거만 고려함으로써 낮은 수준의 논변활동을 보였다. 논의 전반에 걸쳐 구성원들의 프레이밍이 일치하지 않는 경우에는 집단 내의 감정적 갈등이 유발되어 깊은 논의가 이루어지지 않았다. 한편, 이러한 논의 과정에서 학생들의 프레이밍 전환이 관찰되었는데, 여기에는 집단의 리더가 큰 영향을 끼친 것으로 나타났다. 본 연구는 과학 교실에서 과학적 논변에 요구되는 생산적인 프레이밍 형성을 위한 기초 정보를 제공할 것으로 기대된다.

In this study, we explored students' epistemological framing during scientific argumentation and how interactions among group members influenced group argumentation. Twenty-one gifted science students divided into groups of three or four participated in this study. Students' discussions related to data interpretation concerning the rate of photosynthesis were analyzed. Students' activities were videotaped in groups so the discourse could be transcribed and students' behavioral cues analyzed. Students' epistemological framing has been identified through analysis of their speech and behavioral responses to the anomalous data from the inquiry process. Subsequently, their sources of warrant and group argumentation levels were explored. We found out that group members framed the inquiry in two ways: "understanding phenomena" and "classroom game." Group members whose framing was "understanding phenomena" required other members to justify the anomalous data by examining its validity and reliability, which conclusively demonstrated a high level of argumentation. On the other hand, when group members used "classroom game" to frame their argumentation, they did not recognize the necessity of explaining the anomalous data; rather, these students used simple empirical justification to explain the data, reflecting a low level of argumentation. When students using different epistemological framing disagreed over interpretations of anomalous data throughout the discussion, clashes ensued that resulted in emotional conflict and a lack of discussion. Students' framing shifts were observed during the discussion on which group leaders seemed to have a huge influence. This study lays the foundation for future work on establishing productive framing to prompt scientific argumentation in science classrooms.

키워드

참고문헌

  1. Baird, J. R. (1986). Improving learning through enhanced metacognition : A classroom study. European Journal of Science Education, 8(3), 263-282. https://doi.org/10.1080/0140528860080303
  2. Berland, L. K, & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94. https://doi.org/10.1002/tea.20446
  3. Berland, L. K, & Reiser, B. J. (2011). Classroom communities' adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216. https://doi.org/10.1002/sce.20420
  4. Bloome, D., Puro, P., & Theodorou, E. (1989). Procedural display and classroom lessons. Curriculum Inquiry, 19(3), 265-291. https://doi.org/10.2307/1179417
  5. Chin, C., & Osborne, J. (2010). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883-908. https://doi.org/10.1002/tea.20385
  6. Cho, H., Chang, J., & Kim, H. (2013). Epistemic level in middle school students' small-group argumentation using first-hand or second-hand data. Journal of the Korean Association for Research in Science Education, 33(2), 486-500. https://doi.org/10.14697/jkase.2013.33.2.486
  7. Dreyfus, A., Jungwirth, E., & Eliovitch, R. (1990). Applying the “cognitive conflict” strategy for conceptual change-some implications, difficulties, and problems. Science Education, 74(5), 555-569. https://doi.org/10.1002/sce.3730740506
  8. Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people's images of science. Buckingham, UK: Open University Press.
  9. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-313. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  10. Elby, A. (1999). Another reason that physics students learn by rote. American Journal of Physics, 67(S1), S52-S57. https://doi.org/10.1119/1.19081
  11. Elby, A., & Hammer, D. (2010). Epistemological resources and framing: A cognitive framework for helping teachers interpret and respond to their students' epistemologies. Personal epistemology in the classroom: Theory, research, and implications for practice, 409-434.
  12. Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399-483. https://doi.org/10.1207/S1532690XCI2004_1
  13. Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation : Developments in the application of toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915-933. https://doi.org/10.1002/sce.20012
  14. Goffman, E. (1974). Frame Analysis: An Essay on the Organization of Experience. NY: Harper & Row.
  15. Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of Learning from a modern multidisciplinary perspective, (pp. 89-120). Information Age Publishing.
  16. Hutchison, P., & Hammer, D. (2010). Attending to student epistemological framing in a science classroom. Science Education, 94(3), 506-524. https://doi.org/10.1002/sce.20373
  17. Jimenez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran & M. P. Jimenez- Aleixandre(Eds.), Argumentation in science education: Perspectives from classroom-based research, (pp. 3-28). Dordrecht; London: Springer.
  18. Jimenez-Aleixandre, M., Rodriguez, A., & Duschl, R. (2000). "Doing the lesson" or "doing science": Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  19. Jung, J., & Kim, H. (2010). Influence of ACESE on high school students' argumentative structure and evolutionary conception. Biology Education, 37(4), 526-542.
  20. Kelly, G. J., Druker, S., & Chen, C. (1998). Students' reasoning about electricity : Combining performance assessments with argumentation analysis. International Journal of Science Education, 20(7), 849-871. https://doi.org/10.1080/0950069980200707
  21. Kuhn, D. (1991). The skills of argument. Cambridge, UK: Cambridge University Press.
  22. Kuhn, D. (1993). Science argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337. https://doi.org/10.1002/sce.3730770306
  23. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359. https://doi.org/10.1002/tea.3660290404
  24. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521. https://doi.org/10.1002/tea.10034
  25. Lee, K., Yun, S., & Kim, H. (2012). Understanding of middle school students' small group argumentation of plant and animal classification: Focusing on the effects of leader. Biology Education, 40(1), 71-86. https://doi.org/10.15717/bioedu.2012.40.1.71
  26. Lising, L., & Elby, A. (2005). The impact of epistemology on learning: A case study from introductory physics. American Journal of Physics, 73(4), 372-382. https://doi.org/10.1119/1.1848115
  27. Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57-68. https://doi.org/10.1207/s15326985ep3901_6
  28. McNeill, K. L. (2009). Teachers' use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93(2), 233-268. https://doi.org/10.1002/sce.20294
  29. Redish, E. F. (2004). A theoretical framework for physics education research: Modeling student thinking. In E. F. Redish & Vicentini (Eds.), Proceedings of the enrico fermi summer school course, CLVI, (pp. 1-63). Italian Physical Society: Italy.
  30. Rosenberg, S., Hammer, D., & Phelan, J. (2006). Multiple epistemological coherences in an eighth-grade discussion of the rock cycle. The Journal of the Learning Sciences, 15(2), 261-292. https://doi.org/10.1207/s15327809jls1502_4
  31. Russ, R. S., Lee, V. R., & Sherin, B. L. (2012). Framing in cognitive clinical interviews about intuitive science knowledge: Dynamic students understandings of the discourse interaction. Science Education, 96(4), 573-599. https://doi.org/10.1002/sce.21014
  32. Russ, R. S., & Luna, M. J. (2013). Inferring teacher epistemological framing from local patterns in teacher noticing. Journal of Research in Science Teaching, 50(3), 284-314. https://doi.org/10.1002/tea.21063
  33. Sandoval, W. A., & Millwood, K. A. (2008). What can argumentation tell us about epistemology? In S. Erduran & M. P. Jimenez- Aleixandre (Eds.), Argumentation in science education: Perspectives from classroombased research (pp.71-88). Dordrecht; London: Springer.
  34. Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345-372. https://doi.org/10.1002/sce.10130
  35. Scherr, R. E., & Hammer, D. (2009). Student behavior and epistemological framing: Examples from collaborative active-learning activities in physics. Cognition and Instruction, 27(2), 147-174. https://doi.org/10.1080/07370000902797379
  36. Takao, A. Y., & Kelly, G. J. (2003). Assessment of evidence in university students' scientific writing. Science Education, 12(4), 341-363. https://doi.org/10.1023/A:1024450509847
  37. Tannen, D. (1993). Framing in Discourse. NY: Oxford University Press.
  38. Toulmin, S. (1958). The use of argument. Cambridge: Cambridge University Press.
  39. Yun, S., & Kim, H. (2011). Development and application of the scientific inquiry tasks for small group argumentation, Journal of the Korean Association for Research in Science Education, 31(5), 694-708.
  40. Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62. https://doi.org/10.1002/tea.10008

피인용 문헌

  1. 실험 설계에서 나타난 소집단 논변활동 탐색: 활동에 대한 인식적 목표와 인식적 이해를 중심으로 vol.36, pp.1, 2015, https://doi.org/10.14697/jkase.2016.36.1.0045
  2. 과학적 모형 구성 과정에서 나타난 사고 질문의 개념적 자원 활성화의 이해 -인식론적 프레이밍과 위치 짓기 프레이밍을 중심으로- vol.36, pp.3, 2015, https://doi.org/10.14697/jkase.2016.36.3.0471
  3. 중등 과학교육에서 소집단을 활용한 교수학습 연구 분석 및 '소집단 연구' 방법론 고찰 vol.45, pp.3, 2015, https://doi.org/10.15717/bioedu.2017.45.3.437
  4. 머신 러닝을 활용한 과학 논변 구성 요소 코딩 자동화 가능성 탐색 연구 vol.38, pp.2, 2018, https://doi.org/10.14697/jkase.2018.38.2.219
  5. 비생산적 논변에서 생산적 논변으로의 실행 변화 탐색 -인식론적 자원과 맥락을 중심으로- vol.41, pp.3, 2021, https://doi.org/10.14697/jkase.2021.41.3.193