DOI QR코드

DOI QR Code

Comparative Analysis of Endophytic Fungi Isolated from Dominant Hydrophytes in Junam and Dongpan Wetland

주남저수지와 동판저수지의 수생식물에서 분리된 내생균류의 비교 분석

  • You, Young-Hyun (School of Life Science, Kyungpook National University) ;
  • Park, Jong Myong (School of Life Science, Kyungpook National University) ;
  • Han, Kyung-Sook (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Park, Jong-Han (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Jong-Guk (School of Life Science, Kyungpook National University)
  • 유영현 (경북대학교 생명과학부) ;
  • 박종명 (경북대학교 생명과학부) ;
  • 한경숙 (국립원예특작과학원 원예특작환경과) ;
  • 박종한 (국립원예특작과학원 원예특작환경과) ;
  • 김종국 (경북대학교 생명과학부)
  • Received : 2015.06.11
  • Accepted : 2015.06.17
  • Published : 2015.06.30

Abstract

Hydrocharis dubia Backer and Salvinia natans All. were sampled from the Junam and Dongpan reservoirs, representative freshwater wetlands of Korea. A total of 19 endophytic fungal strains were isolated from hydrophytes native to the Junam wetlands and 5 strains were isolated from the Dongpan wetlands. Depending on phylogenetic analysis based on internal transcribed spacer (ITS) region, strains from Junam belonged to 11 genera and from Dongpan belonged to 5 genera. Fusarium, Phoma and Talaromyces were commonly distributed genera from two wetlands. The fungal diversity index showed clear differences between each wetlands or each host hydrophyte. Above all, the highest diversity value was observed from Salvinia natans All., which have been reported as promising biological resources as eutrophication controller in environmental ecology.

대표적인 담수습지인 경상남도 창원시 주남저수지와 동판저수지에서 우점하는 수생식물종인 자라풀 및 생이가래를 채집하였다. 주남저수지의 자생식물 뿌리에서 19균주와 동판저수지의 자생식물 뿌리에서 9균주를 순수분리 하였다. 이들 내생균류들의 internal transcribed spacer (ITS) 영역 염기서열을 분석하여 계통수를 작성한 결과 분리된 28균주는 주남저수지의 경우 11속, 동판저수지의 경우 5속에 속하는 것으로 확인되었으며, 두 습지에서 모두 13속의 내생균류가 분리되었다. 이들 중 담수습지별로 공통적으로 분리된 균주는 Fusarium, Phoma 및Talaromyces속으로 확인되었다. 담수습지 및 식물종별 내생균류의 다양성을 분석하였을 때 각각 상이한 지수를 보였으며, 그들 중 환경생태학적으로 중요한 위치를 차지하는 생이가래가 높은 지수를 나타내었다.

Keywords

References

  1. Whitaker V, Matvienko B. The denitrification potential and hydrological conditions in the wetlands of the Lobo resevoir. In: Proceeding of Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie; 1995 Jul 23-29; Sao Paulo, Brazil. International Association of Theoretical & Applied Limnology; 1995. p.1377-82.
  2. Denny P. Biodiversity and wetlands. Wetlands Ecol Manag 1994;3:55-61.
  3. Kuczynska-Kippen N. Habitat choice in rotifer communities of three shallow lakes: impact of macrophyte substratum and season. Hydrobiologia 2007;593:27-37. https://doi.org/10.1007/s10750-007-9073-6
  4. Carpenter SR, Lodge DM. Effects of submersed macrophytes on ecosystem processes. Aquatic Bot 1986;26:341-70. https://doi.org/10.1016/0304-3770(86)90031-8
  5. Yeh TY, Ke TY, Lin YL. Algal growth control within natural water purification systems: macrophyte light shading effects. Water Air Soil Pollut 2011;214:575-86. https://doi.org/10.1007/s11270-010-0447-4
  6. Desmet NJ, Van Belleghem S, Seuntjens P, Bouma, TJ, Buis K, Meire P. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river. Phys Chem Earth 2011;36:479-89. https://doi.org/10.1016/j.pce.2008.06.002
  7. You YH, Kang SM, Choi YM, Lee MC, Kim JG. Gibberellins production and identification of endophytic fungi isolated from aquatic plant in fresh water. Kor J Mycol 2015;43:71-6. https://doi.org/10.4489/KJM.2015.43.1.71
  8. You YH, Kwak TW, Kang SM, Lee MC, Kim JG. Aspergillus clavatus Y2H0002 as a new endophytic fungal strain producing gibberellins isolated from Nymphoides peltata in fresh water. Mycobiology 2015;43:87-91. https://doi.org/10.5941/MYCO.2015.43.1.87
  9. You YH, Yoon H, Kang SM, Woo JR, Choo YS, Lee IJ, Shin JH, Kim JG. Cadophora malorum Cs-8-1 as a new fungal strain producing gibberellins isolated from Calystegia soldanella. J Basic Microbiol 2013;53:630-4. https://doi.org/10.1002/jobm.201200002
  10. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. Thermotolerance generated by plant/fungal symbiosis. Science 2002;298:1581. https://doi.org/10.1126/science.1072191
  11. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 2005;102:13386-91. https://doi.org/10.1073/pnas.0504423102
  12. You YH, Yoon H, Seo Y, Kim M, Kang MS, Kim C, Ha SC, Cho GY, Kim JG. Genetic diversity of culturable endophytic fungi isolated from halophytes naturally growing in Muan salt marsh. Kor J Life Sci 2012;22:970-80. https://doi.org/10.5352/JLS.2012.22.7.970
  13. You YH, Seo Y, Yoon H, Kim H, Kim YE, Khalmuratova I, Rim SO, Kim C, Kim JG. Endophytic fungal diversity associated with the roots of coastal sand-dune plants in the Sinduri coastal sand dune, Korea. Kor J Microbiol Biotechnol 2013;41:300-10. https://doi.org/10.4014/kjmb.1305.05003
  14. Khan SA, Hamayun M, Yoon HJ, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH, et al. Plant growth promotion and Penicillium citrinum. BMC Microbiol 2008;8:231. https://doi.org/10.1186/1471-2180-8-231
  15. You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ, Lee JM, Kim JG. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon bay. J Microbiol Biotechnol 2012;22:1549-56. https://doi.org/10.4014/jmb.1205.05010
  16. White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
  18. Margalef DR. Information theory in ecology. Gen Syst 1958;3:36-71.
  19. Whittaker RH. Evolution of species diversity in land communities. Evol Biol 1977;10:1-67.
  20. Fernandez NV, Messuti MI, Fontenla SB. Occurrence of arbuscular mycorrhizas and dark septate endophytes in pteridophytes from a patagonian rainforest, Argentina. J Basic Microbiol 2013;53:498-508. https://doi.org/10.1002/jobm.201100613
  21. Wezowicz K, Rozpadek P, Turnau K. The diversity of endophytic fungi in Verbascum lychnitis from industrial areas. Symbiosis 2014;64:139-47. https://doi.org/10.1007/s13199-015-0312-8
  22. Bezerra JD, Santos MG, Barbosa RN, Svedese VM, Lima DM, Fernandes MJ, Gomes BS, Paiva LM, Almeida-Cortez JS, Souza-Motta CM, et al. Fungal endophytes from cactus Cereus jamacaru in Brazilian tropical dry forest: a first study. Symbiosis 2013;60:53-63. https://doi.org/10.1007/s13199-013-0243-1
  23. Carvalho CR, Gonçalves VN, Pereira CB, Johann S, Galliza IV, Alves TM, Rabello A, Sobral ME, Zani CL, Rosa CA, et al. The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae) from the Brazilian savannah. Symbiosis 2012;57:95-107. https://doi.org/10.1007/s13199-012-0182-2
  24. Soltani J, Hosseyni Moghaddam MS. Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens. Curr Microbiol 2015;70:580-6. https://doi.org/10.1007/s00284-014-0753-y