DOI QR코드

DOI QR Code

Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory

  • Received : 2014.10.12
  • Accepted : 2015.01.23
  • Published : 2015.07.10

Abstract

This paper presents the effect of hybridization material on variation of critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the principle of virtual displacement; the formulation is based on a new trigonometric shape function of displacement taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature.

Keywords

References

  1. Aiello, M.A. and Ombres, L. (1999), "Buckling and vibration of unsymmetric laminated resting on elastic foundation under in-plane and shear forces", Compos. Struct., 44, 31-41. https://doi.org/10.1016/S0263-8223(98)00116-0
  2. Akavci, S.S. (2007), "Buckling and Free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation", J. Reinf. Plast. Compos., 26(18), 1907-1919. https://doi.org/10.1177/0731684407081766
  3. Bao, G., Jiang, W. and Roberts, J.C. (1997), "Analytic and finite element solutions for bending and buckling of orthotropic rectangular plates", Int. J. Solid. Struct., 34, 1797-822. https://doi.org/10.1016/S0020-7683(96)00114-X
  4. Mechab, B., Mechab, I. and Benaissa, S. (2012), "Analysis of thick orthotropic laminated composite plates based on higher order shear deformation theory by the new function under thermomechanicalloading", Compos. Part B, 43, 1453-1458. https://doi.org/10.1016/j.compositesb.2011.11.037
  5. Das, Y. (1963), "Buckling of rectangular orthotropic plates", Appl. Sci. Res., Sec. A, 11(1), 97-103. https://doi.org/10.1007/BF03184714
  6. El meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53, 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  7. El-Zafrany, A., Fadhil, S. and Al-Hosani, K. (1995), "A new fundamental solution for boundary element analysis of thick plates on winkler foundation", Int. J. Numer. Meth. Eng., 38, 887-903. https://doi.org/10.1002/nme.1620380602
  8. Felix, D.H., Bambill, D.V. and Rossit, C.A. (2011), "A note on buckling and vibration of clamped orthotropic plates under in-plane loads", Struct. Eng. Mech., 39(1), 115-123. https://doi.org/10.12989/sem.2011.39.1.115
  9. Gupta, U.S., Ansari, A.H. and Sharma, L. (2006), "Buckling and vibration of polar orthotropic circular plate resting Winkler foundation", J. Sound. Vib., 297, 457-76. https://doi.org/10.1016/j.jsv.2006.01.073
  10. Groves, S.E., Harris, C.E., Highsmith, A.L., Allen, D.H. and Norvell, R.G. (1987), "An experimental and analytical treatment of matrix cracking in cross-ply laminates", Exper. Mech., 27, 73-79. https://doi.org/10.1007/BF02318867
  11. Harik, I. and Ekambaram, R. (1988), "Elastic stability of orthotropic plates", Thin Wall Struct., 6(5), 405-16. https://doi.org/10.1016/0263-8231(88)90020-1
  12. Hwang, I. and Lee, J. (2006), "Buckling of orthotropic plates under various inplane loads", KSCE J. Civil Eng., 10(5), 349-56. https://doi.org/10.1007/BF02830088
  13. Joffe, R., Krasnikovs, A. and Varna, J. (2001), "COD-based simulation of transverse cracking and stiffness reduction in [S/90 n] s laminates", Compos. Sci. Tech., 61, 637-656. https://doi.org/10.1016/S0266-3538(00)00172-X
  14. Kim, S.E., Thai, H.T. and Lee, J. (2009), "Buckling analysis of plate using the two variables refined plate theory", Thin Wall. Struct., 47, 455-462. https://doi.org/10.1016/j.tws.2008.08.002
  15. Lee, H.P. (1998), "Dynamic response of a Timoshenko beam on a Winkler foundation subjected to a moving mass", Appl. Acoust., 55(3), 203-15. https://doi.org/10.1016/S0003-682X(97)00097-2
  16. Malekzadeh, P. and Karami, G. (2004), "Vibration of non-uniform thick plates on elastic foundation by differential quadrature method", Eng. Struct., 26, 1473-82. https://doi.org/10.1016/j.engstruct.2004.05.008
  17. Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre Sci. Technol., 8(2), 81-89. https://doi.org/10.1016/0015-0568(75)90005-6
  18. Omurtag, M.H. and Kadioglu, F. (1998), "Free vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element formulation", Comput. Struct., 67, 253-265. https://doi.org/10.1016/S0045-7949(97)00128-4
  19. Phan, N.D. and Reddy, J.N. (1985), "Analysis of laminated composite plates using a Higher-order Shear Deformation Theory", Int. J. Numer. Meth. Eng., 21, 2201-2219. https://doi.org/10.1002/nme.1620211207
  20. Reddy, J.N. and Khdeir, A.A. (1989), "Buckling and vibration of laminated composite plates using various plate theories", AIAA J., 27(12), 1808-1817. https://doi.org/10.2514/3.10338
  21. Reddy, J.N. (1981), Energy and Variational Methods in Applied Mechanics, John Willy and Sons, New York.
  22. Sadowski, T., Marsavina, L., Peride, N. and Cracium, E.M. (2009a), "Cracks propagation and interaction in an orthotropic elastic material: analytical and numerical methods", Comput, Mater. Sci., 46(3), 687-693. https://doi.org/10.1016/j.commatsci.2009.06.006
  23. Sadowski, T., Marsavina, L., Cracium, E.M. and Knec, M. (2012b), "Modelling and experimental study of parallel cracks propagation in an orthotropic elastic material", Comput, Mater. Sci., 52(1), 231-235. https://doi.org/10.1016/j.commatsci.2010.12.016
  24. Saha, K.N., Kart, R.C. and Dattal, P.K. (1997), "Dynamic stability of a rectangular plate on nonhomogeneous Winkler foundation", Comput. Struct., 63(6), 1213-1222. https://doi.org/10.1016/S0045-7949(96)00390-2
  25. Setoodeh, A.R. and Karami, G. (2004), "Static, free vibration and buckling analysis of anisotropic thick laminated plates on distributed and point elastic supports using a 3-D layer wise FEM", Eng. Struct., 26, 211-220. https://doi.org/10.1016/j.engstruct.2003.09.009
  26. Shen, H.S., Zheng, J.J. and Huang, X.L. (2003), "Dynamic response of shear deformable laminates plates under thermomechanical loading and resting on elastic foundation", Compos. Struct., 60, 57-66. https://doi.org/10.1016/S0263-8223(02)00295-7
  27. Singhatanadgid, P. and Sukajit, P. (2011), "Experimental determination of the buckling load of rectangular plates using vibration correlation technique", Struct. Eng. Mech., 37(3), 331-349. https://doi.org/10.12989/sem.2011.37.3.331
  28. Shimpi, R. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43(22-23), 6783-99. https://doi.org/10.1016/j.ijsolstr.2006.02.007
  29. Rajasekaran, S. and Wilson, A.J. (2013), "Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique", Struct. Eng. Mech., 46(2), 269-294. https://doi.org/10.12989/sem.2013.46.2.269
  30. Thielemann, W. (1950), "Contributions to the problem of the buckling of orthotropic plates", NACA Technical Memorandum, 1263.
  31. Utku, M., Citipitioglu, E. and Inceleme, I. (2000), "Circular plates on elastic foundations modelled with annular plates", Comput. Struct., 78, 365-374. https://doi.org/10.1016/S0045-7949(00)00063-8
  32. Xiang, Y., Kitipornchai, S. and Liew, K.M. (1996), "Buckling and vibration of thick laminates on Pasternak foundation", J. Eng. Mech., ASCE, 122(1), 54-63. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:1(54)

Cited by

  1. A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.547
  2. Thermal stresses in a non-homogeneous orthotropic infinite cylinder vol.59, pp.5, 2016, https://doi.org/10.12989/sem.2016.59.5.841
  3. Distortional buckling of cold-formed lipped channel columns subjected to axial compression vol.23, pp.3, 2017, https://doi.org/10.12989/scs.2017.23.3.331
  4. Post-buckling responses of a laminated composite beam vol.26, pp.6, 2015, https://doi.org/10.12989/scs.2018.26.6.733
  5. Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2015, https://doi.org/10.12989/sem.2018.66.1.027
  6. Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2015, https://doi.org/10.12989/scs.2018.27.5.567
  7. Thermal post-buckling analysis of a laminated composite beam vol.67, pp.4, 2018, https://doi.org/10.12989/sem.2018.67.4.337
  8. Hygrothermal Post-Buckling Analysis of Laminated Composite Beams vol.11, pp.1, 2015, https://doi.org/10.1142/s1758825119500091
  9. Nonlinear behavior of fiber reinforced cracked composite beams vol.30, pp.4, 2019, https://doi.org/10.12989/scs.2019.30.4.327
  10. Stressed state “boundary layer” in a round plate of variable thickness according to refined theory vol.868, pp.None, 2015, https://doi.org/10.1088/1757-899x/868/1/012002