DOI QR코드

DOI QR Code

Ride Quality Analysis Using Seated Human Vibration Modeling

시트-인체 진동 모델링을 이용한 승차감 해석

  • Received : 2015.03.31
  • Accepted : 2015.06.04
  • Published : 2015.06.30

Abstract

In this paper, dynamic modeling with viscoelastic properties of a human body resting on a seat is presented to quantitatively analyze ride quality of passengers exposed to vertical vibrations. In describing the motions of a seated body, a 5 degree-of-freedom multibody model from the literature is investigated. The viscoelastic characteristics of seats used in railway vehicles are mathematically formulated with nonlinear stiffness characteristics and convolution integrals representing time delay terms. Transfer functions for the floor input are investigated and it is found that these are different in accordance with the input magnitude due to nonlinear characteristics of the seat. Measured floor input at the railway vehicle is used to analyze realistic human vibration characteristics. Frequency weighted RMS acceleration values are calculated and the effects of the seat design parameters on the frequency weighted RMS acceleration values are presented.

본 연구에서는 수직 진동에 노출된 승객의 승차감을 정량적으로 분석하기 위해 점탄성 특성을 가진 시트에 기댄 인체의 동적 모델링을 제시한다. 시트 위 인체의 운동을 기술하기 위해 문헌에서 찾은 5자유도계 다물체 동역학 모델이 이용되었다. 철도차량 시트에 사용되는 점탄성 특성은 비선형 강성 특성과 시간 지연을 표현하는 컨볼루션 적분으로 수식화된다. 바닥 가진에 대한 전달함수를 분석 결과 시트의 비선형 특성으로 인해 입력 가진의 크기에 따라 전달함수는 변하는 것으로 나타났다. 측정된 철도차량의 바닥 가진을 이용하여 실제적인 인체 진동 특성을 분석한다. 주파수 가중치 자승평균치 값을 계산하고 시트 설계 파라미터가 이 주파수 가중치 자승평균치에 미치는 영향을 제시한다.

Keywords

References

  1. International Union of Railways (1994) Guidelines for evaluating passenger comfort in relation to vibration in railway vehicles, UIC 513R.
  2. H.S. Hwang, S.W. Kim, C.K. Park, J.Y. Mok, et al. (2008) Discussion for ride evaluation of high speed train by using inferential statistics, Journal of the Korean Society for Railway, 11(6), pp. 543-549.
  3. DIN (2003) Driving point mechanical impedance and transfer functions of the human body, DIN 45676.
  4. ISO (2001) Mechanical vibration and shock-range of idealized values to characterize seated-body biodynamic response under vertical vibration, ISO 5982.
  5. G.J. Steina, P. Mucka, T.P. Gunstonb, S. Badura (2008) Modelling and simulation of locomotive driver's seat vertical suspension vibration isolation system, International Journal of Industrial Ergonomics, 38, pp. 384-395. https://doi.org/10.1016/j.ergon.2007.08.007
  6. C.C. Liang, C.F. Chiang (2008) Modeling of a seated human body exposed to vertical vibrations in various automotive postures, Industrial Health, 46, pp.125-137. https://doi.org/10.2486/indhealth.46.125
  7. R. Singh, P. Davies, and A. K. Bajaj (2003) Identification of nonlinear and viscoelastic properties of flexible polyurethane foam, Nonlinear Dynamics, 34, pp. 319-346. https://doi.org/10.1023/B:NODY.0000013511.07097.87
  8. G. Joshi, A.K. Bajaj, P. Davies (2010) Whole-body vibratory response study using a nonlinear multi-body model of seat-occupant system with viscoelastic flexible polyurethane foam, Industrial Health, 48, pp. 663-674. https://doi.org/10.2486/indhealth.MSWBVI-13
  9. Zheng G., Qiu Y., Griffin M.J. (2011) An analytic model of the in-line and cross-axis apparent mass of the seated human body exposed to vertical vibration with and without a backrest, Journal of Sound and Vibration, 330, pp. 6509-6525. https://doi.org/10.1016/j.jsv.2011.06.026
  10. Y. Qiu, M.J. Griffin (2010) Biodynamic responses of the seated human body to single-axis and dual-axis vibration, Industrial Health, 48, pp. 615-627. https://doi.org/10.2486/indhealth.MSWBVI-26
  11. International Organization for Standardization (1997) International Standard 2631-1 Mechanical vibration and shock-evaluation of human exposure to whole!body vibration. Part 1: general requirements.

Cited by

  1. Study on Vibration Characteristics and Human Riding Comfort of a Special Equipment Cab vol.2018, pp.1687-7268, 2018, https://doi.org/10.1155/2018/7140610