DOI QR코드

DOI QR Code

A Development of the Lightweight Wearable Robot with Carbon Fiber Composite

탄소섬유 복합재를 이용한 경량 착용형 로봇의 개발

  • Lee, Jeayoul (R&D Division, Korea Institute of Robot and Convergence) ;
  • Jeon, Kwangwoo (Design Technology Center, Defence and Aerospace Division, Hankuk Fiber Co., Ltd.) ;
  • Choi, Jeayeon (R&D Division, Korea Institute of Robot and Convergence) ;
  • Chung, Goobong (R&D Division, Korea Institute of Robot and Convergence) ;
  • Suh, Jinho (R&D Division, Korea Institute of Robot and Convergence) ;
  • Choi, Ilseob (Technical Research Lab., POSCO) ;
  • Shin, Kwangbok (Dept. of Mechanical Engineering, Hanbat National University)
  • Received : 2015.05.28
  • Accepted : 2015.06.13
  • Published : 2015.06.30

Abstract

In this paper, we evaluate structural integrity of the wearable robot by using finite element analysis, which is made of CFRP(Carbon Fiber Reinforced Plastic) composite materials to be lightened. On the basis of the ASTM(American Standard Test Method), mechanical tests of the material are carried out in tensile, compressive and shear test for analytical evaluation. With the tested composite material, the main frame and two femoral frames of the robot is redesigned to satisfy the lightening design requirements. It is verified with the structural analysis that the redesigned frames are good for the part of the wearable robot.

본 논문은 착용형 근력지원 로봇의 경량화를 위하여 CFRP(Carbon Fiber Reinforced Plastic) 복합재료의 적용 설계와 유한요소해석을 이용한 안전성 평가 내용을 기술하였다. 금속재 프레임으로 제작된 착용형 근력지원 로봇에 대하여 탄소섬유 복합소재로 대체하였고, 적용 재료에 대하여 ASTM을 기준으로 인장, 압축 그리고 전단시험을 통하여 해석적 평가를 위한 기계적 물성시험을 수행 하였다. 구조해석 결과를 이용하여 설계된 경량 착용형 근력지원 로봇의 메인 프레임 및 대퇴부 프레임은 경량 설계의 설계요구조건을 만족하였으며 제작된 로봇이 기존 금속재 프레임 대비 경량화 효과를 얻을 수 있음을 확인하였다.

Keywords

References

  1. Vitrechova, S., Kutilek, P., and Jirina, M., "Wearable Lower Limb Robotics: A Review," Jounal of Biocybernetics and Biomedical Engineering, Vol. 33, No. 1, 2013, pp. 96-105. https://doi.org/10.1016/j.bbe.2013.03.005
  2. Low, K.H., "Robot-assisted Gait Rehabilitation: From Exoskeleton to Gait Systems," Defense Science Research Conference and Expo (DSR), 2011.
  3. Kim, W.S., Lee, H.D., Kim, D.W., Han, J.S., and Han, C.S., "Mechanical Design of the Hanyang Exoskeleton Assistive Robot(HEXAR)," 14th International Conference on Control, Automation and Systems, Korea, 2014.
  4. Shin, K.B. and Lee, S.J., "Manufacture of Composite Railway Carboy Usign Auto-Clave Curing Technology," Journal of Composite Research, Vol. 18, No. 2, 2005, pp. 52-58.
  5. Lee, J.Y., Jeon, J.S., Shin, K.B., Lee, S.J., and Jeong, J.C., "Evaluation of the Structural Performances of Sandwich Panels for the Material Selection of the Low Floor Bus Bodyshell," Autumn Conference of Korean Society for Composite Materials, pp. 176-180, 2006.
  6. Lee, J.Y., Shin, K.B., and Jeong, J.C., "Simulation of Low Velocity Impact of Honeycomb Sandwich Composite Panels for the BIMODAL Tram Application," Journal of Composite Research, Vol. 20, No. 4, pp. 42-50.
  7. Nordin, M. and Frankerl, V.H., "Basic Biomechanics of the Musculoskeletal System(2nd edition)," Philadelphia: Lea and Febier, 1986.
  8. ASTM D3039/D3039M-14, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials," American Society for Testing and Materials, 2014.
  9. ASTM D3410/D3410M-03, "Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading," American Society for Testing and Materials, 2003.
  10. ASTM D5379/D5379M-12, "Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method," American Society for Testing and Materials, 2012.

Cited by

  1. A Numerical Study and Material Test for Damping Factor of Carbon-Aramid Fiber Reinforced Plastics Robot Arm vol.52, pp.6, 2015, https://doi.org/10.12772/TSE.2015.52.444