• Title/Summary/Keyword: 경량 착용형 로봇

Search Result 3, Processing Time 0.016 seconds

A Development of the Lightweight Wearable Robot with Carbon Fiber Composite (탄소섬유 복합재를 이용한 경량 착용형 로봇의 개발)

  • Lee, Jeayoul;Jeon, Kwangwoo;Choi, Jeayeon;Chung, Goobong;Suh, Jinho;Choi, Ilseob;Shin, Kwangbok
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.81-88
    • /
    • 2015
  • In this paper, we evaluate structural integrity of the wearable robot by using finite element analysis, which is made of CFRP(Carbon Fiber Reinforced Plastic) composite materials to be lightened. On the basis of the ASTM(American Standard Test Method), mechanical tests of the material are carried out in tensile, compressive and shear test for analytical evaluation. With the tested composite material, the main frame and two femoral frames of the robot is redesigned to satisfy the lightening design requirements. It is verified with the structural analysis that the redesigned frames are good for the part of the wearable robot.

Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots (유압식 로봇의 힘 제어를 위한 유압 서보 시스템의 특성에 관한 연구)

  • Kim, Hyo-Gon;Lee, Jong-Won;Park, Sangdeok;Han, Changsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.219-225
    • /
    • 2015
  • Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

Development of the Power Assist System for High Efficiency and Lightweight Wearable Robot in Unstructured Battlefield (비정형화된 전장 환경에 활용 가능한 고효율-경량형 외골격 착용 로봇의 근력 보조 시스템 개발)

  • Huichang Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.313-323
    • /
    • 2023
  • The wearable robot system is designed to assist human skeletal and muscular systems for enhancing user's abilities in various fields, including medical, industrial, and military. The military has an expanding need for wearable robots with the integration of surveillance/control systems and advanced equipment in unstructured battlefield environments. However, there is a lack of research on the design and mechanism of wearable robots, especially for power assist systems. This study proposes a lightweight wearable robot system that provides comfortable wear and muscle support effects in various movements for soldiers performing high-strength and endurance missions. The Power assist mechanism is described and verified, and the tasks that require power assist are analyzed. This study explain the system including its driving mechanism, control system, and mechanical design. Finally, the performance of the robot is verified through experiments and evaluations, demonstrating its effectiveness in muscle support.