DOI QR코드

DOI QR Code

Case Study of Pharmaceutical Ingredients Derived from Clay Minerals

광물 자원에서 유래된 원료 의약품 및 첨가제의 사례 연구

  • Received : 2015.06.25
  • Accepted : 2015.06.27
  • Published : 2015.06.28

Abstract

Clay minerals have been used in pharmaceutical industries as active ingredients and excipients without pharmacological activity such as diluents, emulsifying agents, viscosity-increasing agents, and lubricants. For example, bentonite, kaolin, magnesium aluminum silicate, and talc are generally and extensively used pharmaceutical ingredients, which are restrictedly regulated by Pharmacopoeias. We discuss the physicochemical and biopharmaceutical properties of clay minerals. In addition, we introduce the cases of pharmaceutical applications of clay minerals. From this review, pharmaceutical applications of clay minerals can be one of strategies for the development of high value-added products from clay minerals.

약학 분야에서 점토광물은 점토광물 자체의 약리작용을 확인하고 원료의약품으로 활용하거나 희석제, 유화제, 점증제, 활택제 등 의약품 제형의 완성도를 높이는 첨가제로서 사용되고 있다. 벤토나이트(Bentonite), 카올린(Kaolin), 규산알루민산마그네슘(Magnesium aluminum silicate), 탤크(Talc) 등은 원료의약품 혹은 첨가제로서 활용 가능한 대표적인 점토 광물로 국내외 의약품 공정서에 수재되어 있고, 약학적 활용시 의약품등급으로 규제되고 있다. 본 논문에서는 공정서에 수재된 점토 광물을 중심으로 공정서의 규격을 확인하고, 점토광물의 특성 및 원료의약품 혹은 의약품 첨가제로서의 점토 광물에 대한 활용 사례를 소개하고자 한다. 결론적으로 점토광물을 제약산업에 활용하는 것은 점토광물의 고부가가치화를 위한 한 가지 방법이 될 수 있으며, 자원의 개발 및 활용이라는 측면에서 매우 유용할 것이라 사료된다.

Keywords

References

  1. Al-khattawi, A. and Mohammed, A.R. (2013) Compressed orally disintegrating tablets: excipients evolution and formulation strategies. Expert Opinion on Drug Delivery, v.10, p.651-663. https://doi.org/10.1517/17425247.2013.769955
  2. Bailey, SW. (1980) Summary of recommendations of AIPEA [Association Internationale Pour l'Etude des Argiles] nomenclature committee on clay. American Mineralogist, v.65, p.1-7.
  3. Calabrese, I., Cavallaro, G., Scialabba, C., Licciardi, M., Merli, M., Sciascia, L., Turco, and Liveri, M.L. (2013) Montmorillonite nanodevices for the colon metronidazole delivery. International Journal of Pharmaceutics, v.457, p.224-236. https://doi.org/10.1016/j.ijpharm.2013.09.017
  4. Campbell, K.T., Craig, D.Q. and McNally, T. (2010) Ibuprofen-loaded poly(epsilon-caprolactone) layered silicate nanocomposites prepared by hot melt extrusion. Journal of Materials Science: Materials in Medicine. v.21, p.2307-2316. https://doi.org/10.1007/s10856-009-3963-2
  5. Carretero, M.I. and Pozo, M. (2010) Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Applied Clay Science, v.47, p.171-181. https://doi.org/10.1016/j.clay.2009.10.016
  6. Carretero, M.I. and Pozo, M. (2009) Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications. Applied Clay Science, v.46, p.73-80. https://doi.org/10.1016/j.clay.2009.07.017
  7. Dogan, M., Dogan, A.U., Aburub, A., Botha, A. and Wurster, D.E. (2012) Quantitative mineralogical properties (morphology-chemistry-structure) of pharmaceutical grade kaolinites and recommendations to regulatory agencies. Microscopy and Microanalysis, v.18, p.143-151. https://doi.org/10.1017/S143192761101275X
  8. Dvinskikh, S.V., Szutkowski, K. and Fur, I. (2009) MRI profiles over very wide concentration ranges: application to swelling of a bentonite clay. Journal of Magnetic Resonance, v.198, p.146-150. https://doi.org/10.1016/j.jmr.2009.01.035
  9. Elmore, A.R. (2003) Cosmetic Ingredient Review Expert Panel. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite. International Journal of Toxicology, v.22, p.37-102. https://doi.org/10.1177/1091581803022S115
  10. el-Sayed, A.M., Ismael, A. el-M. and Assi A. el-A. (1993) Dissociation constant of chlordiazepoxide in montmorillonite suspension and its pharmaceutical application for a controlled-release dosage form. Acta pharmaceutica Hungarica, v.63, p.257-266.
  11. Goel, H., Rai, P., Rana, V. and Tiwary, A.K. (2008) Orally disintegrating systems: innovations in formulation and technology. Recent Patents on Drug Delivery & Formulation, v.2, p.258-274. https://doi.org/10.2174/187221108786241660
  12. Hajizadeh, SHajizadeh S., Shiran, K. and Fathollahi, Y. (2005) Responsiveness of vascular alpha1-adrenoceptors of diabetic rat knee joint to phenylephrine in acute inflammation. Journal of Basic and Clinical Physiology and Pharmacology, v.16, p.301-309.
  13. Hong, Y., Ji, H. and Wei, H. (2006) Topical ketanserin attenuates hyperalgesia and inflammation in arthritis in rats. Pain, v.124, p.27-33. https://doi.org/10.1016/j.pain.2006.03.010
  14. Hopkins, J.G. (1946) Some Newer Bases for Use in Cutaneous Therapy. Journal of Investigative Dermatology, v.7, p.171-174. https://doi.org/10.1038/jid.1946.21
  15. Loyd, V. Allen, Jr. Nicholas, G. Popovich, and Howard, C. Ansel (2011) Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, 9th Ed. Lippincott Williams & Wilkins, a Wolters Kluwer business, USA. p.107-188.
  16. Masanaba, S., Pichardo, S., Puerto, M., Gutirrez-Praena, D., Camen, A.M. and Jos, A. (2015) Toxicological evaluation of clay minerals and derived nanocomposites: a review. Environmental Research, v.138, p.233-254. https://doi.org/10.1016/j.envres.2014.12.024
  17. Moyo, F., Tandlich, R., Wilhelmi, B.S. and Balaz, S. (2014) Sorption of hydrophobic organic compounds on natural sorbents and organoclays from aqueous and nonaqueous solutions: a mini-review. International Journal of Environmental Research and Public Health, v.11, p.5020-5048. https://doi.org/10.3390/ijerph110505020
  18. Oh, Y.J., Choi, G., Choy, Y.B., Park, J.W., Park, J.H., Lee, H.J., Yoon, Y.J., Chang, H.C. and Choy, J.H. (2013) Aripiprazole-montmorillonite: a new organic-inorganic nanohybrid material for biomedical applications. Chemistry, v.19, p.4869-4875. https://doi.org/10.1002/chem.201203384
  19. Otto, C.C. and Haydel, S.E. (2013) Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS One, v.17, e64068.
  20. Paineau, E., Bihannic, I., Baravian, C., Philippe, A.M., Davidson, P., Levitz, P., Funari, S.S., Rochas, C. and Michot, L.J. (2011) Aqueous suspensions of natural swelling clay minerals. 1. Structure and electrostatic interactions. Langmuir, v.27, p.5562-5573. https://doi.org/10.1021/la2001255
  21. Rieder, M., Cavazzini, G., D'yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Mller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. Nomenclature of micas. Clays and Clay Minerals, v.46, p.586-595.
  22. Rodrigues, L.A., Figueiras, A., Veiga, F., de Freitas, R.M., Nunes, L.C., da Silva, Filho E.C. and da Silva, Leite C.M. (2013) The systems containing clays and clay minerals from modified drug release: a review. Colloids and Surfaces B: Biointerfaces, v.103, p.642-651. https://doi.org/10.1016/j.colsurfb.2012.10.068
  23. Valenti, D.M., Silva, J., Teodoro, W.R., Velosa, A.P. and Mello, S.B. (2012) Effect of topical clay application on the synthesis of collagen in skin: an experimental study. Clinical and Experimental Dermatology, v.37, p.164-168. https://doi.org/10.1111/j.1365-2230.2011.04216.x
  24. Viseras, C. and Lpez-Galindo, A. (2000) Characteristics of pharmaceutical grade phyllosilicate powders. Pharmaceutical Development and Technology, v.5, p.47-52. https://doi.org/10.1081/PDT-100100518
  25. Viseras, C., Meeten, G.H. and Lopez-Galindo, A. (1999) Pharmaceutical grade phyllosilicate dispersions: the influence of shear history on floc structure. International Journal of Pharmaceutics, v.182, p.7-20. https://doi.org/10.1016/S0378-5173(99)00075-7