DOI QR코드

DOI QR Code

Characterization of Selenium (Se) Distribution in Soils and Crops at Moi-san, Haenam

해남 모이산 인근 토양 및 농작물의 셀레늄(Se) 분포 특성

  • Kim, Seon-Ok (Department of Energy Resources Engineering, Pukyong National University) ;
  • Cheon, Se Weon (Department of Energy Resources Engineering, Pukyong National University) ;
  • Park, Gyu-Ryeong (Department of Energy Resources Engineering, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University)
  • 김선옥 (부경대학교 에너지자원공학과) ;
  • 천세원 (부경대학교 에너지자원공학과) ;
  • 박규령 (부경대학교 에너지자원공학과) ;
  • 왕수균 (부경대학교 에너지자원공학과)
  • Received : 2015.06.23
  • Accepted : 2015.06.29
  • Published : 2015.06.28

Abstract

Samples from soils and crops were collected and analyzed in order to investigate the interactions of selenium among rocks, soils, and crops by hydrothermal alteration near epithermal mines in the region of Mio-san, Haenam. Soil samples included 6 samples each from mountain and farm area and compositional minerals and their contents were analyzed by water content, pH, ICP, XRD, XRF. Crop samples from onion and scallion were analyzed for chemical composition to elucidate the relationship with soils. Results from XRD analysis for soil samples showed that major compositional minerals are qualtz and feldspar, and illite, chlorite, hematite formed by hydrothermal alteration were included on a small scale. The pH ranges of soil samples from mountain and farm were measured at 4.6~4.9 and 5.2~6.7, respectively. The higher pH in farm soils may result from fertilization during agricultural activities. Results from ICP analysis showed that, compared to soil samples from mountain area with no potassium and calcium, significant amount of K and Ca were detected in soil samples from farms which is affected by fertilization. In a similar manner, potassium and calcium were absorbed and detected in crop samples at relatively high concentrations (116.89~169.79 ppm for K and 20.18~32.29 ppm for Ca). While the selenium contents in soil samples ranged from 18.35 ppb to 70.31 ppb which showed no significant difference, high concentrations of selenium were detected in onion (119.48~179.50 ppb) and scallion (146.65 ppb). These difference in enrichment for each element may result from the distinctive adsorption characteristics depending on crops.

해남 모이산 천열수 광산 주변의 열수변질작용에 의한 암석, 토양과 농작물간의 셀레늄의 상호작용을 규명하기 위하여, 모이산 인근의 토양과 농작물 시료를 채취 분석하였다. 토양시료는 6개의 산 토양과 6개의 밭 토양을 대상으로 수분함량, pH, ICP, XRD, XRF 분석을 통해 구성 광물과 원소함량을 분석하였으며, 농작물 시료는 토양과의 관계를 파악하기 위해 이 지역에서 재배된 양파와 대파를 대상으로 원소함량을 분석하였다. 토양에 대한 XRD 분석 결과, 주요 구성광물은 석영과 장석이며, 그 외 열수변질작용에 의해 일라이트, 녹니석과 적철석을 포함하고 있는 것으로 나타났다. 산 토양과 밭 토양의 pH는 각각 4.6~4.9와 5.2~6.7로 나타났는데, 산 토양에 비하여 밭 토양의 pH가 높게 나타난 것은 영농에 의한 비료시비가 원인으로 판단되었다. 원소함량 분석 결과, 비료의 영향이 크게 작용하는 밭 토양에서 산 토양에서는 검출되지 않았던 K(24.81~79.49 ppm), Ca(29.27~116.33 ppm) 등이 다량 함유한 것으로 나타났다. 이러한 경향은 작물에서도 나타나는데, 상대적으로 높은 농도의 K(116.89~169.79 ppm), Ca(20.18~32.29 ppm)가 농작물에 흡수되어 있는 것으로 분석되었다. 토양 시료에서의 Se 함량은 18.35~70.31 ppb의 범위로 분석되어 분석 시료간 유의미한 차이를 나타내지는 않았으나, 양파(119.48~179.50 ppb)와 대파(146.65 ppb)에서는 많은 양의 Se이 검출되었다. 이는 작물에 따라 각 원소에 대한 흡수율이 상이하여 농축도 역시 다르게 나타나는 것으로 판단되었다.

Keywords

References

  1. Bowden, C.D. (2007) Epithermal systems of the Seongsan district, South Korea; an investigation on the geological setting and spatial and temporal relationships between high and low sulfidation systems. Ph.D. thesis, James Cook University, Australia, 334p.
  2. Bowen, H.J.M. (1979) Environmental chemistry of the elements. Academic Press, London. 333p.
  3. Dhillon, K.S. and Dhillon, S.K. (2003) Distribution and management of seleniferous soils. Adv. Agron., v.79, p.119-184. https://doi.org/10.1016/S0065-2113(02)79003-2
  4. Diaz-Alarcn, J.P., Navarro-Alarcn, M., Lpez-Garca de la Serrana, H. and Lpez-Martnez, M.C. (1994) Determination of Selenium Levels in Vegetables and Fruits by Hydraide Generation Atomic Absorphion Spectrometry. J. Agric. Food Chem., v.42, p.2848-2851. https://doi.org/10.1021/jf00048a036
  5. Fordham, A.W. (1990) Weathering of biotite into dioctahedral clay minerals. Clay Minerals, v.25, p.51-63. https://doi.org/10.1180/claymin.1990.025.1.06
  6. Frankenberger, W.T. and Benson, S. (1994) Selenium in the environment. M. Dekker, New York, 456p.
  7. Hubert, W.L. (2009) Trace Elements in the Environment, Selenium in Our Environment(Chapter 6). p.96-111.
  8. Kang, J.H., Lee, D.S., Ryoo, C.R., Koh, S.M. and Chi, S.J. (2011) Geological structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization. Econ. Envion. Geol., v.44, n.5, p.413-431. https://doi.org/10.9719/EEG.2011.44.5.413
  9. Koh, S.M., Kim, H.S., Kim, C.K., Yi, M.J., Jo, Y.D., Yoo, J.H., Jeong, S.B., Ryoo, C.R., Kim, Y.D., Heo, C.H., Kim Y.U., Park, S.G., Lee, D.K., Son, J.S., Kim, T.K., Hong, Y.K., Park, S.W., Yang, D.H., Park, J.T., Kim, S.K., Sohn, J.S., Lee, J.H., Chi, S.J., Seo, J.R., Ko, I.S., Lee, H.Y., Kim, I.J., Kim D.O. and Lee, T.S. (2009) Technical development on the life cycle of the Haenam epithermal gold mineralized area and hydrothermal clay resources. MKE, GP2009-003-2009(1), 182p.
  10. Lim, Y.P. (1996) Medical Environmental Geochemisty. Chunkwang, Seoul, p.291-308.
  11. Plumlee, G.S. and Ziegler, T.L. (2003) The Medical Geochemistry of Dusts, Soils, and Other Earth Materials. Treatise on Geochemistry(Volume 9). Elsevier, p.263-310.
  12. Rayman, M.P. (2000) The importance of selenium to human health. The Lancet. v.356, n.9225, p.233-241. https://doi.org/10.1016/S0140-6736(00)02490-9
  13. Reilly, C. (2006) Selenium in Food and Health. Springer, US, 206p.
  14. World Health Organization. (1989) WHO Laboratory Manual for the Examination of Human Semen and Sperm-cervical Mucus Interaction. 4th edition. Cambridge University Press, 128p.