DOI QR코드

DOI QR Code

Effect of LED Light Sources and Their Installation Method on the Growth of Strawberry Plants

LED 광원 및 설치조건에 따른 딸기의 생육 변화

  • Lee, Ji Eun (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Shin, Yong Seub (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Cheung, Joung Do (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Do, Han Woo (Seongju Fruit Vegetable Experiment Station, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Kang, Young Hwa (Deparment of Horticultural science, Kyungpook National University)
  • 이지은 (경상북도농업기술원성주과채류시험장) ;
  • 신용습 (경상북도농업기술원성주과채류시험장) ;
  • 정종도 (경상북도농업기술원성주과채류시험장) ;
  • 도한우 (경상북도농업기술원성주과채류시험장) ;
  • 강영화 (경북대학교 원예과학과)
  • Received : 2015.04.15
  • Accepted : 2015.05.27
  • Published : 2015.06.30

Abstract

The objective of this study was to examine the growth reaction of strawberry plants to the mixed red and blue LED sources and their installation method. The artificial light sources were : LED PAR(PPFD $2{\sim}4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$), LED BAR(PPFD $100{\sim}120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and incandescent(PPFD $2{\sim}4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) lamp. The lighting treatment was started at the first cluster flowering period as a night breaking lighting and was applied during 3 hours, between 22:00 and 01:00 every day. Plant height and leafstalk length were longer in plants treated with incandescent lamp, where as fresh and dry weight of shoot were heavier in LED PAR compared to incandescent lamp treatment. LED PAR treatment also resulted in the largest leaf area, chlorophyll content was increased by $0.36mg{\cdot}g^{-1}$ after 60 days from the starting of the artificial lighting. According to the experimental results application of 16W LED PAR lamps and W-type installation method can improve light environment in strawberry lighting culture.

딸기의 전조재배에 적합한 인공광원을 모색하기 위해 적색과 청색의 LED를 이용하여 설치조건을 검토하였다. 시험에 사용된 인공광원은 LED PAR(PPFD $2{\sim}4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$), LED BAR(PPFD $100{\sim}120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$), 백열등(PPFD $2{\sim}4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)이고 전조시기는 정화방이 개화하는 시점에 22시~01시까지 3시간동안 연속조명하였다. 무처리보다는 전조처리구가 초장과 엽병장이 길었으며, 그 중 백열등이 가장 많이 생장하였다. 전조처리구에서 지상부의 생체중과 건물중은 LED PAR 처리구에서 생장량 대비 가장 무거웠다. 지상부의 엽면적 생장량에서는 무처리 보다는 전조처리구가 엽면적이 증대하는 경향이었고, LED PAR 처리가 엽면적이 넓었다. 엽록소 함량은 전조 후 60일 경에는 LED PAR를 제외하고는 모두 감소하는 경향이었다. 광원별로 광 환경을 시뮬레이션한 결과, 100W 백열등 배광곡선이 원형에 가까워 전조재배시 하우스 위쪽으로 많이 발광되는 것을 볼 수 있다. LED PAR 타입을 설치했을 때는 직진성이 강한 LED의 특성상 조명의 중심이 40lux 이상이며 좁은 지향각과 낮은 설치 위치로 인해 좁은 지역에 집광되는 현상이 나타나고 조명과 조명사이에 기준조도 이하의 음영지역이 발생하였다. 따라서 설치 높이는 2m, 설치 간격은 3.75m로 조절하였고, 배치형태는 W타입으로 변경하여 전체 식물에 $1.2{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 이상이 조사될 수 있도록 기준 조도와 균제도를 맞추어 최적화하였다.

Keywords

References

  1. Choi, H.G., J.K. Kwon, B.Y. Moon, N.J. Kang, K.S. Park, M.W. Cho, and Y.C. Kim. 2013a. Effect of different light emitting diode(LED) lights on the growth characteristics and the phytochemical production of strawberry fruits during cultivation. Kor. J. Hort. Sci. Technol. 31(1):56-64.
  2. Choi, H.G., H.J. Jeong, B.Y. Moon, B. Khoshimkhujaev, J.K. Kwon, K.S. Park, S.Y. Lee, M.W. Cho, and N.J. Kang. 2013b. Effects of supplemental LED lightings on fruit quality and yield of strawberry. J. Agric. Life Sci. 47:49-56.
  3. Choi, S.Y., M.J. Kil, Y.S. Kwon, J.A. Jung, and S.K. Park. 2012. Effect of different Light Emitting Diode(LED) on growth and flowering in chrysanthemum. Flower Res. J. 20:128-133.
  4. Duong, T.N., T. Takamura, H. Watanabe, K. Okamoto, and M. Tanaka. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes(LEDs). Plant Cell, Tissue and Organ Culture 73:43-52. https://doi.org/10.1023/A:1022638508007
  5. Johkan, M., K. Shoji, F. Goto, S. Hahiad, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1890-1814.
  6. Kim, Y.H. 2002. Control of artificial lighting for plant production system in the future. J. Bio-Environ. Con. : Proceedings of the Korean Society for Bio-Environment Control Conference. p. 78-102.
  7. Moon, W. and S.G. Lee. 2000. Cultivation plant physiology. KNOU Press. p. 192-226. (in Korean)
  8. Okamoto, K., T. Yanagi, S. Takita, M. Tanaka, T. Higuchi, Y. Ushida, and H. Watanabe. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. Acta Hort. 440:111-116.
  9. R.D.A. 2009. Standard farming handbook of strawberry. Rural Development Administration. p. 120-139.
  10. Samuoliene, G., R. Sirtautas, A. Brazaityte, and P. Duchovskis. 2012. LED lighting and seasonality effects antioxidant properies of baby leaf lettuce. Food Chem. 134:1494-1499. https://doi.org/10.1016/j.foodchem.2012.03.061
  11. Senger, H. 1982. The effect of blue light on plants and microorganisms. Photochem. Potobiol. 35:911-920. https://doi.org/10.1111/j.1751-1097.1982.tb02668.x
  12. Shin, J.H., H.H. Jung, and K.S. Kim. 2010. Night interruption using light emitting diodes(LEDs) promotes flowering of Cyclamen perisicum in winter cultivation. Hort. Enviro. and Biotechnol. 51:391-395.
  13. Yoon, C.G. and H.K. Choi. 2011. A study on the various light source radiation conditions and use of LED illumination. Journal of KIIEE. 25:14-22.
  14. Yoon, H.S., H.J. Jeon, and T.I. Kim. 2010. Strawberry playing. 1th ed. Ililsa. p. 73-75. (in Korean)
  15. Yoshita, S., A.F. Douglas, and H.C. James. 1971. Determination of chlorophyll in plant tissue. p. 36-37. In: Laboratory manual for physiological studies of rice. The International Rice Research Institute. Los Bonos, Laguna, Philippines.